601 research outputs found

    Withdrawal-induced delirium associated with a benzodiazepine switch: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Introduced in the early 1960s, diazepam remains among the most frequently prescribed benzodiazepine-type sedatives and hypnotics. Patients with chronic use of short-acting benzodiazepines are frequently switched to diazepam because the accumulating, long-acting metabolite, N-desmethyl-diazepam, prevents benzodiazepine-associated withdrawal symptoms, which can occur during trough plasma levels of short-acting benzodiazepines. Although mild to moderate withdrawal symptoms are frequently observed during benzodiazepine switching to diazepam, severe medical complications associated with this treatment approach have thus far not been reported.</p> <p>Case presentation</p> <p>A 64-year-old female Caucasian with major depression, alcohol dependence and benzodiazepine dependence was successfully treated for depression and, after lorazepam-assisted alcohol detoxification, was switched from lorazepam to diazepam to facilitate benzodiazepine discontinuation. Subsequent to the benzodiazepine switch, our patient unexpectedly developed an acute delirious state, which quickly remitted after re-administration of lorazepam. A newly diagnosed early form of mixed dementia, combining both vascular and Alzheimer-type lesions, was found as a likely contributing factor for the observed vulnerability to benzodiazepine-induced withdrawal symptoms.</p> <p>Conclusion</p> <p>Chronic use of benzodiazepines is common in the elderly and a switch to diazepam often precedes benzodiazepine discontinuation trials. However, contrary to common clinical practice, benzodiazepine switching to diazepam may require cross-titration with slow tapering of the first benzodiazepine to allow for the build-up of N-desmethyl-diazepam, in order to safely prevent severe withdrawal symptoms. Alternatively, long-term treatment with low doses of benzodiazepines may be considered, especially in elderly patients with chronic use of benzodiazepines and proven vulnerability to benzodiazepine-associated withdrawal symptoms.</p

    A semiparametric modeling framework for potential biomarker discovery and the development of metabonomic profiles

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The discovery of biomarkers is an important step towards the development of criteria for early diagnosis of disease status. Recently electrospray ionization (ESI) and matrix assisted laser desorption (MALDI) time-of-flight (TOF) mass spectrometry have been used to identify biomarkers both in proteomics and metabonomics studies. Data sets generated from such studies are generally very large in size and thus require the use of sophisticated statistical techniques to glean useful information. Most recent attempts to process these types of data model each compound's intensity either discretely by positional (mass to charge ratio) clustering or through each compounds' own intensity distribution. Traditionally data processing steps such as noise removal, background elimination and m/z alignment, are generally carried out separately resulting in unsatisfactory propagation of signals in the final model.</p> <p>Results</p> <p>In the present study a novel semi-parametric approach has been developed to distinguish urinary metabolic profiles in a group of traumatic patients from those of a control group consisting of normal individuals. Data sets obtained from the replicates of a single subject were used to develop a functional profile through Dirichlet mixture of beta distribution. This functional profile is flexible enough to accommodate variability of the instrument and the inherent variability of each individual, thus simultaneously addressing different sources of systematic error. To address instrument variability, all data sets were analyzed in replicate, an important issue ignored by most studies in the past. Different model comparisons were performed to select the best model for each subject. The m/z values in the window of the irregular pattern are then further recommended for possible biomarker discovery.</p> <p>Conclusion</p> <p>To the best of our knowledge this is the very first attempt to model the physical process behind the time-of flight mass spectrometry. Most of the state of the art techniques does not take these physical principles in consideration while modeling such data. The proposed modeling process will apply as long as the basic physical principle presented in this paper is valid. Notably we have confined our present work mostly within the modeling aspect. Nevertheless clinical validation of our recommended list of potential biomarkers will be required. Hence, we have termed our modeling approach as a "framework" for further work.</p

    Hormonal control of p53 and chemoprevention

    Get PDF
    Improvements in the detection and treatment of breast cancer have dramatically altered its clinical course and outcome. However, prevention of breast cancer remains an elusive goal. Parity, age of menarche, and age at menopause are major risk factors drawing attention to the important role of the endocrine system in determining the risk of breast cancer, while heritable breast cancer susceptibility syndromes have implicated tumor suppressor genes as important targets. Recent work demonstrating hormonal modulation of the p53 tumor suppressor pathway draws together these established determinants of risk to provide a model of developmental susceptibility to breast cancer. In this model, the mammary epithelium is rendered susceptible due to impaired p53 activity during specific periods of mammary gland development, but specific endocrine stimuli serve to activate p53 function and to mitigate this risk. The results focus attention on p53 as a molecular target for therapies to reduce the risk of breast cancer

    Drug Metabolism in Human Brain: High Levels of Cytochrome P4503A43 in Brain and Metabolism of Anti-Anxiety Drug Alprazolam to Its Active Metabolite

    Get PDF
    Cytochrome P450 (P450) is a super-family of drug metabolizing enzymes. P450 enzymes have dual function; they can metabolize drugs to pharmacologically inactive metabolites facilitating their excretion or biotransform them to pharmacologically active metabolites which may have longer half-life than the parent drug. The variable pharmacological response to psychoactive drugs typically seen in population groups is often not accountable by considering dissimilarities in hepatic metabolism. Metabolism in brain specific nuclei may play a role in pharmacological modulation of drugs acting on the CNS and help explain some of the diverse response to these drugs seen in patient population. P450 enzymes are also present in brain where drug metabolism can take place and modify therapeutic action of drugs at the site of action. We have earlier demonstrated an intrinsic difference in the biotransformation of alprazolam (ALP) in brain and liver, relatively more α-hydroxy alprazolam (α-OHALP) is formed in brain as compared to liver. In the present study we show that recombinant CYP3A43 metabolizes ALP to both α-OHALP and 4-hydroxy alprazolam (4-OHALP) while CYP3A4 metabolizes ALP predominantly to its inactive metabolite, 4-OHALP. The expression of CYP3A43 mRNA in human brain samples correlates with formation of relatively higher levels of α-OH ALP indicating that individuals who express higher levels of CYP3A43 in the brain would generate larger amounts of α-OHALP. Further, the expression of CYP3A43 was relatively higher in brain as compared to liver across different ethnic populations. Since CYP3A enzymes play a prominent role in the metabolism of drugs, the higher expression of CYP3A43 would generate metabolite profile of drugs differentially in human brain and thus impact the pharmacodynamics of psychoactive drugs at the site of action

    Multicenter safety study of mFOLFOX6 for unresectable advanced/recurrent colorectal cancer in elderly patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Combination chemotherapy with oxaliplatin plus 5-fluorouracil/leucovorin (FOLFOX) has become a standard regimen for colorectal cancer. An increase of adverse events with combination chemotherapy is predicted in elderly patients, and it remains controversial whether they should receive the same chemotherapy as younger patients. Accordingly, this study of modified FOLFOX6 (mFOLFOX6) therapy was performed to compare its safety between elderly and non-elderly patients.</p> <p>Methods</p> <p>We prospectively studies 14 non-elderly patients aged <70 years old and 8 elderly patients aged ≥ 70 years with unresectable advanced/recurrent colorectal cancer who received mFOLFOX6 therapy during the period from March 2006 to March 2007. Adverse events and the response to treatment were compared between the elderly and non-elderly groups.</p> <p>Results</p> <p>The main adverse events were neutropenia and peripheral neuropathy, which occurred in 62.5% (≥ grade 3) and 87.5% (≥ grade 1) of elderly patients. The grade and frequency of adverse events were similar in the elderly and non-elderly groups. In some patients with neutropenia, treatment could be continued without reducing the dose of oxaliplatin by deleting bolus 5-fluorouracil. A correlation was found between the cumulative dose of oxaliplatin and the severity of neuropathy, and there were 2 elderly and 3 younger patients in whom discontinuation of treatment was necessary due to peripheral neuropathy. The median number of treatment cycles was 10.0 and 9.5 in the non-elderly and elderly groups, respectively. The response rate was 60.0% in the non-elderly and 50.0% in the elderly group, while the disease control rate was 100% and 83.3% respectively, showing no age-related difference.</p> <p>Conclusion</p> <p>mFOLFOX6 therapy was well-tolerated and effective in both non-elderly and elderly patients. However, discontinuation of treatment was sometimes necessary due to peripheral neuropathy, which is dose-limiting toxicity of this therapy.</p

    p53 mutations in human cutaneous melanoma correlate with sun exposure but are not always involved in melanomagenesis

    Get PDF
    In melanoma, the relationship between sun exposure and the origin of mutations in either the N-ras oncogene or the p53 tumour-suppressor gene is not as clear as in other types of skin cancer. We have previously shown that mutations in the N-ras gene occur more frequently in melanomas originating from sun-exposed body sites, indicating that these mutations are UV induced. To investigate whether sun exposure also affects p53 in melanoma, we analysed 81 melanoma specimens for mutations in the p53 gene. The mutation frequency is higher than thus far reported: 17 specimens (21%) harbour one or more p53 mutations. Strikingly, 17 out of 22 mutations in p53 are of the C:G to T:A or CC:GG to TT:AA transitional type, strongly suggesting an aetiology involving UV exposure. Interestingly, the p53 mutation frequency in metastases was much lower than in primary tumours. In the case of metastases, a role for sun exposure was indicated by the finding that the mutations are present exclusively in skin metastases and not in internal metastases. Together with a relatively frequent occurrence of silent third-base pair mutations in primary melanomas, this indicates that the p53 mutations, at least in these tumours, have not contributed to melanomagenesis and may have originated after establishment of the primary tumour. 1999 Cancer Research Campaig
    corecore