133 research outputs found

    Interspecific Variation in Life History Relates to Antipredator Decisions by Marine Mesopredators on Temperate Reefs

    Get PDF
    As upper-level predatory fishes become overfished, mesopredators rise to become the new ‘top’ predators of over-exploited marine communities. To gain insight into ensuing mechanisms that might alter indirect species interactions, we examined how behavioural responses to an upper-level predatory fish might differ between mesopredator species with different life histories. In rocky reefs of the northeast Pacific Ocean, adult lingcod (Ophiodon elongatus) are upper-level predators that use a sit-and-wait hunting mode. Reef mesopredators that are prey to adult lingcod include kelp greenling (Hexagrammos decagrammus), younger lingcod, copper rockfish (Sebastes caurinus) and quillback rockfish (S. maliger). Across these mesopredators species, longevity and age at maturity increases and, consequently, the annual proportion of lifetime reproductive output decreases in the order just listed. Therefore, we hypothesized that the level of risk taken to acquire resources would vary interspecifically in that same order. During field experiments we manipulated predation risk with a model adult lingcod and used fixed video cameras to quantify interactions between mesopredators and tethered prey (Pandalus shrimps). We predicted that the probabilities of inspecting and attacking tethered prey would rank from highest to lowest and the timing of these behaviours would rank from earliest to latest as follows: kelp greenling, lingcod, copper rockfish, and quillback rockfish. We also predicted that responses to the model lingcod, such as avoidance of interactions with tethered prey, would rank from weakest to strongest in the same order. Results were consistent with our predictions suggesting that, despite occupying similar trophic levels, longer-lived mesopredators with late maturity have stronger antipredator responses and therefore experience lower foraging rates in the presence of predators than mesopredators with faster life histories. The corollary is that the fishery removal of top predators, which relaxes predation risk, could potentially lead to stronger increases in foraging rates for mesopredators with slower life histories

    Total blood lymphocyte counts in hemochromatosis probands with HFE C282Y homozygosity: relationship to severity of iron overload and HLA-A and -B alleles and haplotypes

    Get PDF
    BACKGROUND: It has been reported that some persons with hemochromatosis have low total blood lymphocyte counts, but the reason for this is unknown. METHODS: We measured total blood lymphocyte counts using an automated blood cell counter in 146 hemochromatosis probands (88 men, 58 women) with HFE C282Y homozygosity who were diagnosed in medical care. Univariate and multivariate analyses of total blood lymphocyte counts were evaluated using these variables: sex; age, transferrin saturation, and serum ferritin concentration at diagnosis; units of blood removed by phlebotomy to achieve iron depletion; and human leukocyte antigen (HLA)-A and -B alleles and haplotypes. RESULTS: The mean age at diagnosis was 49 ± 14 years (range 18 – 80 years) in men and 50 ± 13 years (range 22 – 88 years) in women. The correlations of total blood lymphocyte counts with sex, age, transferrin saturation, and serum ferritin concentration at diagnosis, and units of blood removed by phlebotomy to achieve iron depletion were not significant at the 0.05 level. Univariate analyses revealed significant associations between total blood lymphocyte counts and presence of the HLA-A*01, -B*08, and -B*14 alleles, and the A*01-B*08 haplotype. Presence of the A*01 allele, B*08 allele, or A*01-B*08 haplotype were associated with a lower total blood lymphocyte count, whereas presence of the B*14 allele was associated with a greater total blood lymphocyte count. There was an inverse association of total blood lymphocyte count with units of phlebotomy to achieve iron depletion, serum ferritin concentration, and with presence of the A*01-B*08 haplotype. CONCLUSION: We conclude that there is a significant inverse relationship of total blood lymphocyte counts and severity of iron overload in hemochromatosis probands with HFE C282Y homozygosity. The presence of the HLA-A*01 allele or the -B*08 allele was also associated with significantly lower total blood lymphocyte counts, whereas presence of the -B*14 allele was associated with significantly higher total blood lymphocyte counts. In univariate and multivariate analyses, total blood lymphocyte counts were significantly lower in probands with the HLA-A*01-B*08 haplotype than in probands without this haplotype

    Preexisting Japanese Encephalitis Virus Neutralizing Antibodies and Increased Symptomatic Dengue Illness in a School-Based Cohort in Thailand

    Get PDF
    Dengue viruses (DENVs) and Japanese encephalitis virus (JEV) have significant cross-reactivity in serological assays, but the possible clinical implications of this remain poorly understood. Interactions between these flaviviruses are potentially important for public health because wild-type JEV continues to co-circulate with DENV in Southeast Asia, the area with the highest burden of DENV illness, and JEV vaccination coverage in this region is high. In this study, we examined how preexisting JEV neutralizing antibodies (NAbs) influenced the clinical severity of subsequent DENV infection using data from a prospective school-based cohort study in Thailand that captured a wide range of clinical severities, including asymptomatic, non-hospitalized, and hospitalized DENV infections. We found that the prior existence of JEV NAbs was associated with an increased occurrence of symptomatic versus asymptomatic DENV infection. This association was most notable in DENV-naives, in whom the presence of JEV NAbs was also associated with an illness of longer duration. These findings suggest that the issue of heterologous flavivirus immunity and DENV infection merits renewed attention and interest and that DENV vaccine developers might incorporate detailed assessments of preexisting immunity to non-DENV flaviviruses and histories of vaccination against non-DENV flaviviruses in evaluating DENV vaccine safety and efficacy

    Dicer Is Associated with Ribosomal DNA Chromatin in Mammalian Cells

    Get PDF
    Background: RNA silencing is a common term for pathways utilizing small RNAs as sequence-specific guides to repress gene expression. Components of the RNA silencing machinery are involved in different aspects of chromatin function in numerous organisms. However, association of RNA silencing with chromatin in mammalian cells remains unclear. Methodology/Principal Findings: Immunostaining of mitotic chromosomes with antibodies visualizing either endogenous or ectopically expressed Dicer in mammalian cells revealed association of the protein with ribosomal DNA (rDNA) repeats. Chromatin immunoprecipitations and bisulfite sequencing experiments indicated that Dicer is associated with transcribed regions of both active and silenced genes in rDNA arrays of interphase chromosomes. Metabolic labeling of the mouse embryonic stem (ES) cells lacking Dicer did not reveal apparent defect in rRNA biogenesis though pre-rRNA synthesis in these cells was decreased, likely as a consequence of their slower growth caused by the loss of miRNAs. We analyzed in detail chromatin structure of rDNA but did not find any epigenetic changes at rDNA loci in Dicer 2/2 ES cells. Instead, we found that rDNA methylation is rather low in primary tissues, contrasting with rDNA methylation patterns in transformed cell lines. Conclusion/Significance: We found that Dicer, a key component of RNA silencing pathways, can be detected in association with rDNA chromatin in mammalian cells. The role of this particular localization of Dicer is not readily apparent since th

    A Novel Resource Polymorphism in Fish, Driven by Differential Bottom Environments: An Example from an Ancient Lake in Japan

    Get PDF
    Divergent natural selection rooted in differential resource use can generate and maintain intraspecific eco-morphological divergence (i.e., resource polymorphism), ultimately leading to population splitting and speciation. Differing bottom environments create lake habitats with different benthos communities, which may cause selection in benthivorous fishes. Here, we document the nature of eco-morphological and genetic divergence among local populations of the Japanese gudgeon Sarcocheilichthys (Cyprinidae), which inhabits contrasting habitats in the littoral zones (rocky vs. pebbly habitats) in Lake Biwa, a representative ancient lake in East Asia. Eco-morphological analyses revealed that Sarcocheilichthys variegatus microoculus from rocky and pebbly zones differed in morphology and diet, and that populations from rocky environments had longer heads and deeper bodies, which are expected to be advantageous for capturing cryptic and/or attached prey in structurally complex, rocky habitats. Sarcocheilichthys biwaensis, a rock-dwelling specialist, exhibited similar morphologies to the sympatric congener, S. v. microoculus, except for body/fin coloration. Genetic analyses based on mitochondrial and nuclear microsatellite DNA data revealed no clear genetic differentiation among local populations within/between the gudgeon species. Although the morphogenetic factors that contribute to morphological divergence remain unclear, our results suggest that the gudgeon populations in Lake Biwa show a state of resource polymorphism associated with differences in the bottom environment. This is a novel example of resource polymorphism in fish within an Asian ancient lake, emphasizing the importance and generality of feeding adaptation as an evolutionary mechanism that generates morphological diversification

    BMP Signaling Modulates Hepcidin Expression in Zebrafish Embryos Independent of Hemojuvelin

    Get PDF
    Hemojuvelin (Hjv), a member of the repulsive-guidance molecule (RGM) family, upregulates transcription of the iron regulatory hormone hepcidin by activating the bone morphogenetic protein (BMP) signaling pathway in mammalian cells. Mammalian models have identified furin, neogenin, and matriptase-2 as modifiers of Hjv's function. Using the zebrafish model, we evaluated the effects of hjv and its interacting proteins on hepcidin expression during embryonic development. We found that hjv is strongly expressed in the notochord and somites of the zebrafish embryo and that morpholino knockdown of hjv impaired the development of these structures. Knockdown of hjv or other hjv-related genes, including zebrafish orthologs of furin or neogenin, however, failed to decrease hepcidin expression relative to liver size. In contrast, overexpression of bmp2b or knockdown of matriptase-2 enhanced the intensity and extent of hepcidin expression in zebrafish embryos, but this occurred in an hjv-independent manner. Furthermore, we demonstrated that zebrafish hjv can activate the human hepcidin promoter and enhance BMP responsive gene expression in vitro, but is expressed at low levels in the zebrafish embryonic liver. Taken together, these data support an alternative mechanism for hepcidin regulation during zebrafish embryonic development, which is independent of hjv

    Evolution of High Trophic Diversity Based on Limited Functional Disparity in the Feeding Apparatus of Marine Angelfishes (f. Pomacanthidae)

    Get PDF
    The use of biting to obtain food items attached to the substratum is an ecologically widespread and important mode of feeding among aquatic vertebrates, which rarely has been studied. We did the first evolutionary analyses of morphology and motion kinematics of the feeding apparatus in Indo-Pacific members of an iconic family of biters, the marine angelfishes (f. Pomacanthidae). We found clear interspecific differences in gut morphology that clearly reflected a wide range of trophic niches. In contrast, feeding apparatus morphology appeared to be conserved. A few unusual structural innovations enabled angelfishes to protrude their jaws, close them in the protruded state, and tear food items from the substratum at a high velocity. Only one clade, the speciose pygmy angelfishes, showed functional departure from the generalized and clade-defining grab-and-tearing feeding pattern. By comparing the feeding kinematics of angelfishes with wrasses and parrotfishes (f. Labridae) we showed that grab-and-tearing is based on low kinematics disparity. Regardless of its restricted disparity, the grab-and-tearing feeding apparatus has enabled angelfishes to negotiate ecological thresholds: Given their widely different body sizes, angelfishes can access many structurally complex benthic surfaces that other biters likely are unable to exploit. From these surfaces, angelfishes can dislodge sturdy food items from their tough attachments. Angelfishes thus provide an intriguing example of a successful group that appears to have evolved considerable trophic diversity based on an unusual yet conserved feeding apparatus configuration that is characterized by limited functional disparity

    A High-Sensitivity Method for Detection and Measurement of HMGB1 Protein Concentration by High-Affinity Binding to DNA Hemicatenanes

    Get PDF
    BACKGROUND: Protein HMGB1, an abundant nuclear non-histone protein that interacts with DNA and has an architectural function in chromatin, was strikingly shown some years ago to also possess an extracellular function as an alarmin and a mediator of inflammation. This extracellular function has since been actively studied, both from a fundamental point of view and in relation to the involvement of HMGB1 in inflammatory diseases. A prerequisite for such studies is the ability to detect HMGB1 in blood or other biological fluids and to accurately measure its concentration. METHODOLOGY/PRINCIPAL FINDINGS: In addition to classical techniques (western blot, ELISA) that make use of specific anti-HMGB1 antibodies, we present here a new, extremely sensitive technique that is based on the fact that hemicatenated DNA loops (hcDNA) bind HMGB1 with extremely high affinity, higher than the affinity of specific antibodies, similar in that respect to DNA aptamers. DNA-protein complexes formed between HMGB1 and radiolabeled hcDNA are analyzed by electrophoresis on nondenaturing polyacrylamide gels using the band-shift assay method. In addition, using a simple and fast protocol to purify HMGB1 on the basis of its solubility in perchloric acid allowed us to increase the sensitivity by suppressing any nonspecific background. The technique can reliably detect HMGB1 at a concentration of 1 pg per microliter in complex fluids such as serum, and at much lower concentrations in less complex samples. It compares favorably with ELISA in terms of sensitivity and background, and is less prone to interference from masking proteins in serum. CONCLUSION: The new technique, which illustrates the potential of DNA nanoobjects and aptamers to form high-affinity complexes with selected proteins, should provide a valuable tool to further investigate the extracellular functions of HMGB1 and its involvement in inflammatory pathologies

    It is time to talk about people: a human-centered healthcare system

    Get PDF
    Examining vulnerabilities within our current healthcare system we propose borrowing two tools from the fields of engineering and design: a) Reason's system approach [1] and b) User-centered design [2,3]. Both approaches are human-centered in that they consider common patterns of human behavior when analyzing systems to identify problems and generate solutions. This paper examines these two human-centered approaches in the context of healthcare. We argue that maintaining a human-centered orientation in clinical care, research, training, and governance is critical to the evolution of an effective and sustainable healthcare system
    corecore