73 research outputs found
Safety and efficacy of topiramate in neonates with hypoxic ischemic encephalopathy treated with hypothermia (NeoNATI).
Abstract Background Despite progresses in neonatal care, the mortality and the incidence of neuro-motor disability after perinatal asphyxia have failed to show substantial improvements. In countries with a high level of perinatal care, the incidence of asphyxia responsible for moderate or severe encephalopathy is still 2–3 per 1000 term newborns. Recent trials have demonstrated that moderate hypothermia, started within 6 hours after birth and protracted for 72 hours, can significantly improve survival and reduce neurologic impairment in neonates with hypoxic-ischemic encephalopathy. It is not currently known whether neuroprotective drugs can further improve the beneficial effects of hypothermia. Topiramate has been proven to reduce brain injury in animal models of neonatal hypoxic ischemic encephalopathy. However, the association of mild hypothermia and topiramate treatment has never been studied in human newborns. The objective of this research project is to evaluate, through a multicenter randomized controlled trial, whether the efficacy of moderate hypothermia can be increased by concomitant topiramate treatment. Methods/Design Term newborns (gestational age ≥ 36 weeks and birth weight ≥ 1800 g) with precocious metabolic, clinical and electroencephalographic (EEG) signs of hypoxic-ischemic encephalopathy will be randomized, according to their EEG pattern, to receive topiramate added to standard treatment with moderate hypothermia or standard treatment alone. Topiramate will be administered at 10 mg/kg once a day for the first 3 days of life. Topiramate concentrations will be measured on serial dried blood spots. 64 participants will be recruited in the study. To evaluate the safety of topiramate administration, cardiac and respiratory parameters will be continuously monitored. Blood samplings will be performed to check renal, liver and metabolic balance. To evaluate the efficacy of topiramate, the neurologic outcome of enrolled newborns will be evaluated by serial neurologic and neuroradiologic examinations. Visual function will be evaluated by means of behavioural standardized tests. Discussion This pilot study will explore the possible therapeutic role of topiramate in combination with moderate hypothermia. Any favourable results of this research might open new perspectives about the reduction of cerebral damage in asphyxiated newborns. Trial registration Current Controlled Trials ISRCTN62175998; ClinicalTrials.gov Identifier NCT01241019; EudraCT Number 2010-018627-25</p
Neuronal migration disorders: clinical, neuroradiological and genetics aspects
Disorders of neuronal migration are a heterogeneous group of disorders of nervous system
development. One of the most frequent disorders is lissencephaly, characterized by a paucity of normal gyri and
sulci resulting in a ‘smooth brain’. There are two pathologic subtypes: classical and cobblestone. Six
different genes could be responsible for this entity (LIS1, DCX, TUBA1A, VLDLR, ARX, RELN), although
co-delection of YWHAE gene with LIS1 could result in Miller–Dieker Syndrome. Heterotopia is defined as a cluster of normal neurons in abnormal locations, and divided into three main groups: periventricular nodular heterotopia, subcortical heterotopia and marginal glioneural heterotopia. Genetically, heterotopia is related to Filamin A (FLNA) or ADP-ribosylation factor guanine exchange factor 2 (ARFGEF2) genes mutations. Polymicrogyria is described as an augmentation of small circonvolutions separated by shallow enlarged sulci; bilateral frontoparietal form is characterized by bilateral, symmetric polymicrogyria in the frontoparietal regions. Bilateral perisylvian polymicrogyria results in a clinical syndrome manifested
by mild mental retardation, epilepsy and pseudobulbar palsy. Gene mutations linked to this disorder are SRPX2, PAX6, TBR2, KIAA1279, RAB3GAP1 and COL18A1. Schizencephaly, consisting in a cleft of cerebral hemisphere connecting extra-axial subaracnoid spaces and ventricles, is another important disorder of neuronal migration whose clinical characteristics are extremely variable. EMX2 gene could be implicated in its genesis.
Focal cortical dysplasia is characterized by three different types of altered cortical laminations, and
represents one of most severe cause of epilepsy in children. TSC1 gene could play a role in its
etiology. Conclusion: This review reports the main clinical, genetical and neuroradiological aspects of these disorders. It is
hoped that accumulating data of the development mechanisms underlying the expanded network formation in
the brain will lead to the development of therapeutic options for neuronal migration disorders
- …