896 research outputs found

    COMETABOLIC DEGRADATION OF CHLOROALLYL ALCOHOLS IN BATCH AND CONTINUOUS CULTURES

    Get PDF
    The biodegradation of chloroallyl alcohols by pure and mixed bacterial cultures was investigated. Only 2-chloroallyl alcohol and cis- and trans-3-chloroallyl alcohol served as growth substrate for pure cultures. The other chloroallyl alcohols could be cometabolically degraded during growth on 2-chloroallyl alcohol. Cometabolic degradation of trichloroallyl alcohol, which was the most recalcitrant congener, by a Pseudomonas strain isolated on 2-chloroallyl alcohol resulted in 60% dechlorination. Efficient degradation of a mixture of chloroallyl alcohols in continuous culture could only be achieved in the presence of a satellite population. The mixed culture degraded 99% of the total chloroallyl alcohols added with 71% chloride release. The culture contained strains with a new catabolic potential. The results indicate the importance of mixed cultures and genetic adaptation for efficient chloroallyl alcohol removal

    Identification of a Baeyer-Villiger monooxygenase sequence motif

    Get PDF
    Baeyer-Villiger monooxygenases (BVMOs) form a distinct class of flavoproteins that catalyze the insertion of an oxygen atom in a C-C bond using dioxygen and NAD(P)H. Using newly characterized BVMO sequences, we have uncovered a BVMO-identifying sequence motif: FXGXXXRXXXW(P/D). Studies with site-directed mutants of 4-hydroxyacetophenone monooxygenase from Pseudomonas fluorescens ACB suggest that this fingerprint sequence is critically involved in catalysis. Further sequence analysis showed that the BVMOs belong to a novel superfamily that comprises three known classes of FAD-dependent monooxygenases: the so-called flavin-containing monooxygenases (FMOs), the N-hydroxylating monooxygenases (NMOs), and the BVMOs. Interestingly, FMOs contain an almost identical sequence motif when compared to the BVMO sequences: FXGXXXHXXX(Y/F). Using these novel amino acid sequence fingerprints, BVMOs and FMOs can be readily identified in the protein sequence databank. (C) 2002 Federation of European Biochemical Societies. Published by Elsevier Science B.V. All rights reserved

    Crystallographic and Fluorescence Studies of the Interaction of Haloalkane Dehalogenase with Halide Ions. Studies with Halide Compounds Reveal a Halide Binding Site in the Active Site

    Get PDF
    Haloalkane dehalogenase from Xanthobacter autotrophicus GJ10 catalyzes the conversion of 1,2-dichloroethane to 2-chloroethanol and chloride without use of oxygen or cofactors. The active site is situated in an internal cavity, which is accesible from the solvent, even in the crystal. Crystal structures of the dehalogenase enzyme complexed with iodoacetamide, chloroacetamide, iodide, and chloride at pH 6.2 and 8.2 revealed a halide binding site between the ring NH's of two tryptophan residues, Trp-125 and Trp-175, located in the active site. The halide ion lies on the intersection of the planes of the rings of the tryptophans. The binding of iodide and chloride to haloalkane dehalogenase caused a strong decrease in protein fluorescence. The decrease could be fitted to a modified form of the Stern-Volmer equation, indicating the presence of fluorophors of different accessibilities. Halide binding was much stronger at pH 6.0 than at pH 8.2. Assuming ligand binding to Trp-125 and Trp-175 as the sole cause of fluorescence quenching, dissociation constants at pH 6.0 with chloride and iodide were calculated to be 0.49 +/- 0.04 and 0.074 +/- 0.007 mM, respectively. Detailed structural investigation showed that the halide binding site probably stabilizes the halide product as well as the negatively charged transition state occurring during the formation of the covalent intermediate

    Haloalkane-utilizing Rhodococcus strains isolated from geographically distinct locations possess a highly conserved gene cluster encoding haloalkane catabolism

    Get PDF
    The sequences of the 16S rRNA and haloalkane dehalogenase (dhaA) genes of five gram-positive haloalkane-utilizing bacteria isolated from contaminated sites in Europe, Japan, and the United States and of the archetypal haloalkane-degrading bacterium Rhodococcus sp. strain NCIMB13064 were compared. The 16S rRNA gene sequences showed less than 1% sequence divergence, and all haloalkane degraders clearly belonged to the genus Rhodococcus. All strains shared a completely conserved dhaA gene, suggesting that the dhaA genes were recently derived from a common ancestor. The genetic organization of the dhaA gene region in each of the haloalkane degraders was examined by hybridization analysis and DNA sequencing. Three different groups could be defined on the basis of the extent of the conserved dhaA segment. The minimal structure present in all strains consisted of a conserved region of 12.5 kb, which included the haloalkane-degradative gene cluster that was previously found in strain NCIMB13064. Plasmids of different sizes were found in all strains. Southern hybridization analysis with a dhaA gene probe suggested that all haloalkane degraders carry the dhaA gene region both on the chromosome and on a plasmid (70 to 100 kb). This suggests that an ancestral plasmid was transferred between these Rhodococcus strains and subsequently has undergone insertions or deletions. In addition, transposition events and/or plasmid integration may be responsible for positioning the dhaA gene region on the chromosome. The data suggest that the haloalkane dehalogenase gene regions of these gram-positive haloalkane-utilizing bacteria are composed of a single catabolic gene cluster that was recently distributed world-wide

    Biocatalytic conversion of epoxides

    Get PDF
    Epoxides are attractive intermediates for producing chiral compounds. Important biocatalytic reactions involving epoxides include epoxide hydrolase mediated kinetic resolution, leading to the formation of diols and enantiopure remaining substrates, and enantioconvergent enzymatic hydrolysis, which gives high yields of a single enantiomer from racemic mixtures. Epoxides can also be converted by non-hydrolytic enantioselective ring opening, using alternative anionic nucleophiles; these reactions can be catalysed by haloalcohol dehalogenases. The differences in scope of these enzymatic conversions is related to their different catalytic mechanisms, which involve, respectively, covalent catalysis with an aspartate carboxylate as the nucleophile and non-covalent catalysis with a tyrosine that acts as a general acid-base. The emerging new possibilities for enantioselective biocatalytic conversion of epoxides suggests that their importance in green chemistry will grow.

    Ruthenacycles and Iridacycles as Catalysts for Asymmetric Transfer Hydrogenation and Racemisation

    Get PDF
    Ruthenacycles, which are easily prepared in a single step by reaction between enantiopure aromatic amines and [Ru(arene)Cl2]2 in the presence of NaOH and KPF6, are very good asymmetric transfer hydrogenation catalysts. A range of aromatic ketones were reduced using isopropanol in good yields with ee’s up to 98%. Iridacycles, which are prepared in similar fashion from [IrCp*Cl2]2 are excellent catalysts for the racemisation of secondary alcohols and chlorohydrins at room temperature. This allowed the development of a new dynamic kinetic resolution of chlorohydrins to the enantiopure epoxides in up to 90% yield and 98% enantiomeric excess (ee) using a mutant of the enzyme Haloalcohol dehalogenase C and an iridacycle as racemisation catalyst.

    Antikaon production in nucleon-nucleon reactions near threshold

    Get PDF
    The antikaon production cross section from nucleon-nucleon reactions near threshold is studied in a meson exchange model. We include both pion and kaon exchange, but neglect the interference between the amplitudes. In case of pion exchange the antikaon production cross section can be expressed in terms of the antikaon production cross section from a pion-nucleon interaction, which we take from the experimental data if available. Otherwise, a KK^*-resonance exchange model is introduced to relate the different reaction cross sections. In case of kaon exchange the antikaon production cross section is related to the elastic KNKN and KˉN\bar KN cross sections, which are again taken from experimental measurements. We find that the one-meson exchange model gives a satisfactory fit to the available data for the NNNNKKˉNN\to NNK\bar K cross section at high energies. We compare our predictions for the cross section near threshold with an earlier empirical parameterization and that from phase space models.Comment: 16 pages, LaTeX, 5 postscript figures included, submitted to Z. Phys.

    A Scalable Middleware Solution for Advanced Wide Area Web Services

    Get PDF
    To alleviate scalability problems in the Web, many researchers concentrate on how to incorporate advanced caching and replication techniques. Many solutions incorporate object-based techniques. In particular, Web resources are considered as distributed objects offering a well-defined interface. We argue that most proposals ignore two important aspects. First, there is little discussion on what kind of coherence should be provided. Proposing specific caching or replication solutions makes sense only if we know what coherence model they should implement. Second, most proposals treat all Web resources alike. Such a one-size-fits-all approach will never work in a wide-area system. We propose a solution in which Web resources are encapsulated in physically distributed shared objects. Each object should encapsulate not only state and operations, but also the policy by which its state is distributed, cached, replicated, migrated, etc

    Associations of sedentary behaviour, physical activity, blood pressure and anthropometric measures with cardiorespiratory fitness in children with cerebral palsy

    Get PDF
    Background - Children with cerebral palsy (CP) have poor cardiorespiratory fitness in comparison to their peers with typical development, which may be due to low levels of physical activity. Poor cardiorespiratory fitness may contribute to increased cardiometabolic risk. Purpose - The aim of this study was to determine the association between sedentary behaviour, physical activity and cardiorespiratory fitness in children with CP. An objective was to determine the association between cardiorespiratory fitness, anthropometric measures and blood pressure in children with CP. Methods- This study included 55 ambulatory children with CP [mean (SD) age 11.3 (0.2) yr, range 6-17 yr; Gross Motor Function Classification System (GMFCS) levels I and II]. Anthropometric measures (BMI, waist circumference and waist-height ratio) and blood pressure were taken. Cardiorespiratory fitness was measured using a 10 m shuttle run test. Children were classified as low, middle and high fitness according to level achieved on the test using reference curves. Physical activity was measured by accelerometry over 7 days. In addition to total activity, time in sedentary behaviour and light, moderate, vigorous, and sustained moderate-to-vigorous activity (≥10 min bouts) were calculated. Results - Multiple regression analyses revealed that vigorous activity (β = 0.339, p<0.01), sustained moderate-to-vigorous activity (β = 0.250, p<0.05) and total activity (β = 0.238, p<0.05) were associated with level achieved on the shuttle run test after adjustment for age, sex and GMFCS level. Children with high fitness spent more time in vigorous activity than children with middle fitness (p<0.05). Shuttle run test level was negatively associated with BMI (r2 = -0.451, p<0.01), waist circumference (r2 = -0.560, p<0.001), waist-height ratio (r2 = -0.560, p<0.001) and systolic blood pressure (r2 = -0.306, p<0.05) after adjustment for age, sex and GMFCS level. Conclusions - Participation in physical activity, particularly at a vigorous intensity, is associated with high cardiorespiratory fitness in children with CP. Low cardiorespiratory fitness is associated with increased cardiometabolic risk

    Foot pain and foot health in an educated population of adults: results from the Glasgow Caledonian University Alumni Foot Health Survey

    Get PDF
    Abstract Background Foot pain is common amongst the general population and impacts negatively on physical function and quality of life. Associations between personal health characteristics, lifestyle/behaviour factors and foot pain have been studied; however, the role of wider determinants of health on foot pain have received relatively little attention. Objectives of this study are i) to describe foot pain and foot health characteristics in an educated population of adults; ii) to explore associations between moderate-to-severe foot pain and a variety of factors including gender, age, medical conditions/co-morbidity/multi-morbidity, key indicators of general health, foot pathologies, and social determinants of health; and iii) to evaluate associations between moderate-to-severe foot pain and foot function, foot health and health-related quality-of-life. Methods Between February and March 2018, Glasgow Caledonian University Alumni with a working email address were invited to participate in the cross-sectional electronic survey (anonymously) by email via the Glasgow Caledonian University Alumni Office. The survey was constructed using the REDCap secure web online survey application and sought information on presence/absence of moderate-to-severe foot pain, patient characteristics (age, body mass index, socioeconomic status, occupation class, comorbidities, and foot pathologies). Prevalence data were expressed as absolute frequencies and percentages. Multivariate logistic and linear regressions were undertaken to identify associations 1) between independent variables and moderate-to-severe foot pain, and 2) between moderate-to-severe foot pain and foot function, foot health and health-related quality of life. Results Of 50,228 invitations distributed, there were 7707 unique views and 593 valid completions (median age [inter-quartile range] 42 [31–52], 67.3% female) of the survey (7.7% response rate). The sample was comprised predominantly of white Scottish/British (89.4%) working age adults (95%), the majority of whom were overweight or obese (57.9%), and in either full-time or part-time employment (82.5%) as professionals (72.5%). Over two-thirds (68.5%) of the sample were classified in the highest 6 deciles (most affluent) of social deprivation. Moderate-to-severe foot pain affected 236/593 respondents (39.8%). High body mass index, presence of bunions, back pain, rheumatoid arthritis, hip pain and lower occupation class were included in the final multivariate model and all were significantly and independently associated with moderate-to-severe foot pain (p < 0.05), except for rheumatoid arthritis (p = 0.057). Moderate-to-severe foot pain was significantly and independently associated lower foot function, foot health and health-related quality of life scores following adjustment for age, gender and body mass index (p < 0.05). Conclusions Moderate-to-severe foot pain was highly prevalent in a university-educated population and was independently associated with female gender, high body mass index, bunions, back pain, hip pain and lower occupational class. Presence of moderate-to-severe foot pain was associated with worse scores for foot function, foot health and health-related quality-of-life. Education attainment does not appear to be protective against moderate-to-severe foot pain
    corecore