17 research outputs found

    Universal emission intermittency in quantum dots, nanorods, and nanowires

    Get PDF
    Virtually all known fluorophores, including semiconductor nanoparticles, nanorods and nanowires exhibit unexplainable episodes of intermittent emission blinking. A most remarkable feature of the fluorescence intermittency is a universal power law distribution of on- and off-times. For nanoparticles the resulting power law extends over an extraordinarily wide dynamic range: nine orders of magnitude in probability density and five to six orders of magnitude in time. The exponents hover about the ubiquitous value of -3/2. Dark states routinely last for tens of seconds, which are practically forever on quantum mechanical time scales. Despite such infinite states of darkness, the dots miraculously recover and start emitting again. Although the underlying mechanism responsible for this phenomenon remains an enduring mystery and many questions remain, we argue that substantial theoretical progress has been made.Comment: 9 pages, 2 figures, Accepted versio

    Uniform exciton fluorescence from individual molecular nanotubes immobilized on solid substrates

    Get PDF
    Self-assembled quasi one-dimensional nanostructures of π-conjugated molecules may find a use in devices owing to their intriguing optoelectronic properties, which include sharp exciton transitions, strong circular dichroism, high exciton mobilities and photoconductivity. However, many applications require immobilization of these nanostructures on a solid substrate, which is a challenge to achieve without destroying their delicate supramolecular structure. Here, we use a drop-flow technique to immobilize double-walled tubular J-aggregates of amphiphilic cyanine dyes without affecting their morphological or optical properties. High-resolution images of the topography and exciton fluorescence of individual J-aggregates are obtained simultaneously with polarization-resolved near-field scanning optical microscopy. These images show remarkably uniform supramolecular structure, both along individual nanotubes and between nanotubes in an ensemble, demonstrating their potential for light harvesting and energy transport.

    Watching two conjugated polymer chains breaking each other when colliding in solution

    No full text
    While collision theory successfully describes the kinetics of chemical reactions, very little is known about the processes at the molecular level, especially if the reacting molecules are large. In this study, using single-molecule spectroscopy, we visually observed that collision between two conjugated polymer (CP) molecules in solution leads to simultaneous rupture of both chains. In addition to opening up the possibility of monitoring chemical processes in solution at the single-molecule level, these results demonstrate that mechanical bending of two stiff conjugated backbones against each other (the effect of leverage) by Brownian motion can weaken the chemical bond and markedly accelerate photochemical oxygen-induced chain scission by at least 20 times. The catalytic effect of the chain bending is also enhanced by a prolonged interaction between the chains owing to their entanglement. These findings are important for the solution processing of CPs in their application in organic electronics, for understanding the degradation mechanisms in CPs and for the development of new catalysts based on mechanical interactions with target molecules
    corecore