55 research outputs found

    Spatial processing of visual information in the movement-detecting pathway of the fly

    Full text link
    1. Spatial processing of visual signals in the fly's movement-detecting pathway was studied by recording the responses of directionally-selective movement-detecting (DSMD) neurons in the lobula plate. The summarized results pertain to a type of neuron which preferentially responds to horizontal movement directed toward the animal's midline. Three kinds of visual stimuli were used: moving gratings, reversing-contrast gratings and reversing-contrast bars.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47087/1/359_2004_Article_BF00613743.pd

    A muon-track reconstruction exploiting stochastic losses for large-scale Cherenkov detectors

    Get PDF
    IceCube is a cubic-kilometer Cherenkov telescope operating at the South Pole. The main goal of IceCube is the detection of astrophysical neutrinos and the identification of their sources. High-energy muon neutrinos are observed via the secondary muons produced in charge current interactions with nuclei in the ice. Currently, the best performing muon track directional reconstruction is based on a maximum likelihood method using the arrival time distribution of Cherenkov photons registered by the experiment\u27s photomultipliers. A known systematic shortcoming of the prevailing method is to assume a continuous energy loss along the muon track. However at energies >1 TeV the light yield from muons is dominated by stochastic showers. This paper discusses a generalized ansatz where the expected arrival time distribution is parametrized by a stochastic muon energy loss pattern. This more realistic parametrization of the loss profile leads to an improvement of the muon angular resolution of up to 20% for through-going tracks and up to a factor 2 for starting tracks over existing algorithms. Additionally, the procedure to estimate the directional reconstruction uncertainty has been improved to be more robust against numerical errors

    Landing reaction ofMusca domestica

    No full text

    Signaling mechanism of extracellular RNA in endothelial cells

    No full text
    Extracellular RNA has been shown to induce vascular endothelial growth factor (VEGF)-dependent hyperpermeability in vivo as well as in vitro. Studies were performed to investigate the mechanism of these effects. For permeability studies primary cultures of porcine brain-derived microvascular endothelial cells (BMECs) and for all other analytical studies the human brain endothelial cell line HCMEC/D3 or human umbilical vein endothelial cells (HUVECs) were used. RNA, but not DNA, initiated signaling events by binding of VEGF to neuropilin-1, followed by VEGF-R2 phosphorylation, activation of phospholipase C (PLC), and intracellular release of Ca(2+). Activation of these pathways by RNA also resulted in the release of von Willebrand Factor from Weibel-Palade bodies. Pretreatment of cells with heparinase totally abrogated the RNA-induced permeability changes, whereas RNA together with VEGF completely restored VEGF-R2-mediated hyperpermeability. Although poly:IC increased the interleukin-6 release via activation of toll-like receptor-3 (TLR-3), permeability changes mediated by poly:IC or RNA remained unchanged after blocking TLR-3 or NF-kB activation. These results indicate that extracellular RNA serves an important cofactor function to engage VEGF for VEGF-R2-dependent signal transduction, reminiscent of the coreceptor mechanism mediated by proteoglycans, which might be of relevance for the mobilization and cellular activities of RNA-binding cytokines in general
    • …
    corecore