81 research outputs found

    Coulomb Blockade Regime of a Single-Wall Nanotube

    Full text link
    A model of carbon nanotube at half filling is studied. The Coulomb interaction is assumed to be unscreened. It is shown that this allows to develop the adiabatic approximation which leads to considerable simplifications in calculations of the excitation spectrum. We give a detailed analysis of the spectrum and the phase diagram at half filling and discuss effects of small doping. At small doping several phases develop strong superconducting fluctuations corresponding to various types of pairing

    Optical absorption of spin ladders

    Full text link
    We present a theory of phonon-assisted optical two-magnon absorption in two-leg spin-ladders. Based on the strong intra-rung-coupling limit we show that collective excitations of total spin S=0, 1 and 2 exist outside of the two-magnon continuum. It is demonstrated that the singlet collective state has a clear signature in the optical spectrum.Comment: 4 pages, 3 figure

    Mean-Field Theory for Spin Ladders Using Angular-Momentum Coupled Bases

    Full text link
    We study properties of two-leg Heisenberg spin ladders in a mean-field approximation using a variety of angular-momentum coupled bases. The mean-field theory proposed by Gopalan, Rice, and Sigrist, which uses a rung basis, assumes that the mean-field ground state consists of a condensate of spin-singlets along the rungs of the ladder. We generalize this approach to larger angular-momentum coupled bases which incorporate---by their mere definition---a substantial fraction of the important short-range structure of these materials. In these bases the mean-field ground-state remains a condensate of spin singlet---but now with each involving a larger fraction of the spins in the ladder. As expected, the ``purity'' of the ground-state, as judged by the condensate fraction, increases with the size of the elementary block defining the basis. Moreover, the coupling to quasiparticle excitations becomes weaker as the size of the elementary block increases. Thus, the weak-coupling limit of the theory becomes an accurate representation of the underlying mean-field dynamics. We illustrate the method by computing static and dynamic properties of two-leg ladders in the various angular-momentum coupled bases.Comment: 28 pages with 8 figure

    Hole Dispersions for Antiferromagnetic Spin-1/2 Two-Leg Ladders by Self-Similar Continuous Unitary Transformations

    Full text link
    The hole-doped antiferromagnetic spin-1/2 two-leg ladder is an important model system for the high-TcT_c superconductors based on cuprates. Using the technique of self-similar continuous unitary transformations we derive effective Hamiltonians for the charge motion in these ladders. The key advantage of this technique is that it provides effective models explicitly in the thermodynamic limit. A real space restriction of the generator of the transformation allows us to explore the experimentally relevant parameter space. From the effective Hamiltonians we calculate the dispersions for single holes. Further calculations will enable the calculation of the interaction of two holes so that a handle of Cooper pair formation is within reach.Comment: 16 pages, 26 figure

    Superconductivity and Charge Density Wave in a Quasi-One-Dimensional Spin Gap System

    Full text link
    We consider a model of spin-gapped chains weakly coupled by Josephson and Coulomb interactions. Combining such non-perturbative methods as bosonization and Bethe ansatz to treat the intra-chain interactions with the Random Phase Approximation for the inter-chain couplings and the first corrections to this, we investigate the phase diagram of this model. The phase diagram shows both charge density wave ordering and superconductivity. These phases are seperated by a line of critical points which exhibits an approximate an SU(2) symmetry. We consider the effects of a magnetic field on the system. We apply the theory to the material Sr_2 Ca_12 Cu_24 O_41 and suggest further experiments.Comment: 14 pages, 7 figure; submitted to PRB; Revised with new version: references added; section on the flux state remove

    Phase diagrams of the generalized spin-1/2 ladder under staggered field and dimerization: A renormalization group study

    Full text link
    In the weak-coupling regime of the continuous theories, two sets of one-loop renormalization group equations are derived and solved to disclose the phase diagrams of the antiferromagnetic generalized two-leg spin-1/2 ladder under the effect of (I) a staggered external magnetic field and (II) an explicit dimerization. In model (I), the splitting of the SU(2)2_2 critical line into U(1) and Z2_2 critical surfaces is observed; while in model (II), two critical surfaces arising from their underlying critical lines with SU(2)2_2 and Z2_2 characteristics merge into an SU(2)1_1 critical surface on the line where the model attains its highest symmetry.Comment: 10 pages, 9 figure

    Perturbation theories for the S=1/2 spin ladder with four-spin ring exchange

    Full text link
    The isotropic S=1/2 antiferromagnetic spin ladder with additional four-spin ring exchange is studied perturbatively in the strong coupling regime with the help of cluster expansion technique, and by means of bosonization in the weak coupling limit. It is found that a sufficiently large strength of ring exchange leads to a second-order phase transition, and the shape of the boundary in the vicinity of the known exact transition point is obtained. The critical exponent for the gap is found to be η≃1\eta\simeq1, in agreement both with exact results available for the dimer line and with the bosonization analysis. The phase emerging for high values of the ring exchange is argued to be gapped and spontaneously dimerized. The results for the transition line from strong coupling and from weak coupling match with each other naturally.Comment: 8 pages, 4 figures, some minor changes in text and reference

    Dynamical spin correlations in Heisenberg ladder under magnetic field and correlation functions in SO(5) ladder

    Full text link
    The zero-temperature dynamical spin-spin correlation functions are calculated for the spin-1/2 two-leg Heisenberg ladder in a magnetic field above the lower critical field Hc1. The dynamical structure factors are calculated which exhibit both massless and massive excitations. These modes appear in different sectors characterized by the parity in the rung direction and by the momentum in the direction of the chains. The structure factors have power-law singularities at the lower edges of their support. The results are also applicable to spin-1 Heisenberg chain. The implications are briefly discussed for various correlation functions and the pi-resonance in the SO(5) symmetric ladder model.Comment: 15 pages, 6 figures, added references; final version to appear in Phys. Rev.

    Effect of Hund coupling in the one-dimensional SU(4) Hubbard model

    Full text link
    The one-dimensional SU(4) Hubbard model perturbed by Hund coupling is studied, away from half-filling, by means of renormalization group and bosonization methods. A spectral gap is always present in the spin-orbital sector irrespective of the magnitude of the Coulomb repulsion. We further distinguish between two qualitatively different regimes. At small Hund coupling, we find that the symmetry of the system is dynamically enlarged to SU(4) at low energy with the result of {\it coherent} spin-orbital excitations. When the charge sector is not gapped, a superconducting instability is shown to exist. At large Hund coupling, the symmetry is no longer enlarged to SU(4) and the excitations in the spin sector become {\it incoherent}. Furthermore, the superconductivity can be suppressed in favor of the conventional charge density wave state.Comment: 10 pages, 1 figur

    Excitation spectrum of the S=1/2 quantum spin ladder with frustration: elementary quasiparticles and many-particle bound states

    Full text link
    We study the excitation spectrum of the two-chain S=1/2 Heisenberg spin ladder with additional inter-chain second-neighbor frustrating interactions. The one and two-particle excitations are analyzed by using a mapping of the model onto a Bose gas of hard-core triplets. We find that low-lying singlet and triplet two-particle bound states are present and their binding energy increases with increasing frustration. In addition, many-particle bound states are found by a combination of variational and exact diagonalization techniques. We prove that the larger the number of bound quasiparticles the larger the binding energy. Thus the excitation spectrum has a complex structure and consists of elementary triplets and collective many-particle singlet and triplet excitations which generally mix with the elementary ones. The model exhibits a quantum phase transition from an antiferromagnetic ladder phase (small frustration) into Haldane phase (effectively ferromagnetic ladder for large frustration). We argue that near the transition point the spectrum in both triplet and singlet channels becomes gapless. The excitation wave function is dominated by large-size bound states which leads to the vanishing of the quasiparticle residue.Comment: RevTeX, 23 pages, 12 figure
    • …
    corecore