3,269 research outputs found
Expected seismicity and the seismic noise environment of Europa
Seismic data will be a vital geophysical constraint on internal structure of
Europa if we land instruments on the surface. Quantifying expected seismic
activity on Europa both in terms of large, recognizable signals and ambient
background noise is important for understanding dynamics of the moon, as well
as interpretation of potential future data. Seismic energy sources will likely
include cracking in the ice shell and turbulent motion in the oceans. We define
a range of models of seismic activity in Europa's ice shell by assuming each
model follows a Gutenberg-Richter relationship with varying parameters. A range
of cumulative seismic moment release between and Nm/yr is
defined by scaling tidal dissipation energy to tectonic events on the Earth's
moon. Random catalogs are generated and used to create synthetic continuous
noise records through numerical wave propagation in thermodynamically
self-consistent models of the interior structure of Europa. Spectral
characteristics of the noise are calculated by determining probabilistic power
spectral densities of the synthetic records. While the range of seismicity
models predicts noise levels that vary by 80 dB, we show that most noise
estimates are below the self-noise floor of high-frequency geophones, but may
be recorded by more sensitive instruments. The largest expected signals exceed
background noise by 50 dB. Noise records may allow for constraints on
interior structure through autocorrelation. Models of seismic noise generated
by pressure variations at the base of the ice shell due to turbulent motions in
the subsurface ocean may also generate observable seismic noise.Comment: 24 pages, 11 figures, Added in supplementary information from
revision submission, including 3 audio files with sonification of Europa
noise records. To view attachments, please download and extract the gzipped
tar source file listed under "Other formats
Laboratory procedures manual for the firefly luciferase assay for adenosine triphosphate (ATP)
A manual on the procedures and instruments developed for the adenosine triphosphate (ATP) luciferase assay is presented. Data cover, laboratory maintenance, maintenance of bacterial cultures, bacteria measurement, reagents, luciferase procedures, and determination of microbal susceptibility to antibiotics
Parametric Analyses In Randomized Clinical Trials
One salient feature of randomized clinical trials is that patients are randomly allocated to treatment groups, but not randomly sampled from any target population. Without random sampling parametric analyses are inexact, yet they are still often used in clinical trials. Given the availability of an exact test, it would still be conceivable to argue convincingly that for technical reasons (upon which we elaborate) a parametric test might be preferable in some situations. Having acknowledged this possibility, we point out that such an argument cannot be convincing without supporting facts concerning the specifics of the problem at hand. Moreover, we have never seen these arguments made in practice. We conclude that the frequent preference for parametric analyses over exact analyses is without merit. In this article we briefly present the scientific basis for preferring exact tests, and refer the interested reader to the vast literature backing up these claims. We also refute the assertions offered in some recent publications promoting parametric analyses as being superior in some general sense to exact analyses. In asking the reader to keep an open mind to our arguments, we are suggesting the possibility that numerous researchers have published incorrect advice, which has then been taught extensively in schools. We ask the reader to consider the relative merits of the arguments, but not the frequency with which each argument is made
Fire effects on temperate forest soil C and N storage
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/116995/1/eap20112141189.pd
Correspondence between geometrical and differential definitions of the sine and cosine functions and connection with kinematics
In classical physics, the familiar sine and cosine functions appear in two
forms: (1) geometrical, in the treatment of vectors such as forces and
velocities, and (2) differential, as solutions of oscillation and wave
equations. These two forms correspond to two different definitions of
trigonometric functions, one geometrical using right triangles and unit
circles, and the other employing differential equations. Although the two
definitions must be equivalent, this equivalence is not demonstrated in
textbooks. In this manuscript, the equivalence between the geometrical and the
differential definition is presented assuming no a priori knowledge of the
properties of sine and cosine functions. We start with the usual length
projections on the unit circle and use elementary geometry and elementary
calculus to arrive to harmonic differential equations. This more general and
abstract treatment not only reveals the equivalence of the two definitions but
also provides an instructive perspective on circular and harmonic motion as
studied in kinematics. This exercise can help develop an appreciation of
abstract thinking in physics.Comment: 6 pages including 1 figur
Stability ordering of cycle expansions
We propose that cycle expansions be ordered with respect to stability rather
than orbit length for many chaotic systems, particularly those exhibiting
crises. This is illustrated with the strong field Lorentz gas, where we obtain
significant improvements over traditional approaches.Comment: Revtex, 5 incorporated figures, total size 200
Molecular Electroporation and the Transduction of Oligoarginines
Certain short polycations, such as TAT and polyarginine, rapidly pass through
the plasma membranes of mammalian cells by an unknown mechanism called
transduction as well as by endocytosis and macropinocytosis. These
cell-penetrating peptides (CPPs) promise to be medically useful when fused to
biologically active peptides. I offer a simple model in which one or more CPPs
and the phosphatidylserines of the inner leaflet form a kind of capacitor with
a voltage in excess of 180 mV, high enough to create a molecular electropore.
The model is consistent with an empirical upper limit on the cargo peptide of
40--60 amino acids and with experimental data on how the transduction of a
polyarginine-fluorophore into mouse C2C12 myoblasts depends on the number of
arginines in the CPP and on the CPP concentration. The model makes three
testable predictions.Comment: 15 pages, 5 figure
Triacylglycerol hydrolase: role in intracellular lipid metabolism
Recent scientific advances have revealed the identity of several enzymes involved in the synthesis, storage and catabolism of intracellular neutral lipid storage droplets. An enzyme that hydrolyzes stored triacylglycerol (TG), triacylglycerol hydrolase (TGH), was purified from porcine, human and murine liver microsomes. In rodents, TGH is highly expressed in liver as well as heart, kidney, small intestine and adipose tissues, while in humans TGH is mainly expressed in the liver, adipose and small intestine. TGH localizes to the endoplasmic reticulum and lipid droplets. The TGH genes are located within a cluster of carboxylesterase genes on human and mouse chromosomes 16 and 8, respectively. TGH hydrolyzes stored TG, and in the liver, the lipolytic products are made available for VLDL-TG synthesis. Inhibition of TGH activity also inhibits TG and apolipoprotein B secretion by primary hepatocytes. A role for TGH in basal TG lipolysis in adipocytes has been proposed. TGH expression and activity is both developmentally and hormonally regulated. A model for the function of TGH is presented and discussed with respect to tissue specific functions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42880/1/018_2004_Article_3426.pd
- …