172 research outputs found
Flat polymerized membranes at three-loop order
In this conference report, we present a recent field theoretic
renormalization group analysis of flat polymerized membranes at three-loop
order by the present authors [Phys. Rev. E 105, L012603 (2022)].Comment: (v1) 5 page
The flat phase of polymerized membranes at two-loop order
We investigate two complementary field-theoretical models describing the flat
phase of polymerized - phantom - membranes by means of a two-loop,
weak-coupling, perturbative approach performed near the upper critical
dimension , extending the one-loop computation of Aronovitz and
Lubensky [Phys. Rev. Lett. 60, 2634 (1988)]. We derive the renormalization
group equations within the modified minimal substraction scheme, then analyze
the corrections coming from two-loop with a particular attention paid to the
anomalous dimension and the asymptotic infrared properties of the
renormalization group flow. We finally compare our results to those provided by
nonperturbative techniques used to investigate these two models.Comment: 9 pages, 1 figure, published versio
Electrostatics of ions inside the nanopores and trans-membrane channels
A model of a finite cylindrical ion channel through a phospholipid membrane
of width separating two electrolyte reservoirs is studied. Analytical
solution of the Poisson equation is obtained for an arbitrary distribution of
ions inside the trans-membrane pore. The solution is asymptotically exact in
the limit of large ionic strength of electrolyte on the two sides of membrane.
However, even for physiological concentrations of electrolyte, the
electrostatic barrier sizes found using the theory are in excellent agreement
with the numerical solution of the Poisson equation. The analytical solution is
used to calculate the electrostatic potential energy profiles for pores
containing charged protein residues. Availability of a semi-exact interionic
potential should greatly facilitate the study of ionic transport through
nanopores and ion channels
RPAE versus RPA for the Tomonaga model with quadratic energy dispersion
Recently the damping of the collective charge (and spin) modes of interacting
fermions in one spatial dimension was studied. It results from the nonlinear
correction to the energy dispersion in the vicinity of the Fermi points. To
investigate the damping one has to replace the random phase approximation (RPA)
bare bubble by a sum of more complicated diagrams. It is shown here that a
better starting point than the bare RPA is to use the (conserving) linearized
time dependent Hartree-Fock equations, i.e. to perform a random phase
approximation (with) exchange
(RPAE) calculation. It is shown that the RPAE equation can be solved
analytically for the special form of the two-body interaction often used in the
Luttinger liquid framework. While (bare) RPA and RPAE agree for the case of a
strictly linear disperson there are qualitative differences for the case of the
usual nonrelativistic quadratic dispersion.Comment: 6 pages, 3 figures, misprints corrected; to appear in PRB7
Dehydration and ionic conductance quantization in nanopores
There has been tremendous experimental progress in the last decade in
identifying the structure and function of biological pores (ion channels) and
fabricating synthetic pores. Despite this progress, many questions still remain
about the mechanisms and universal features of ionic transport in these
systems. In this paper, we examine the use of nanopores to probe ion transport
and to construct functional nanoscale devices. Specifically, we focus on the
newly predicted phenomenon of quantized ionic conductance in nanopores as a
function of the effective pore radius - a prediction that yields a particularly
transparent way to probe the contribution of dehydration to ionic transport. We
study the role of ionic species in the formation of hydration layers inside and
outside of pores. We find that the ion type plays only a minor role in the
radial positions of the predicted steps in the ion conductance. However, ions
with higher valency form stronger hydration shells, and thus, provide even more
pronounced, and therefore, more easily detected, drops in the ionic current.
Measuring this phenomenon directly, or from the resulting noise, with synthetic
nanopores would provide evidence of the deviation from macroscopic (continuum)
dielectric behavior due to microscopic features at the nanoscale and may shed
light on the behavior of ions in more complex biological channels.Comment: 13 pages, 10 figure
Transport and magnetization dynamics in a superconductor/single-molecule magnet/superconductor junction
We study dc-transport and magnetization dynamics in a junction of arbitrary
transparency consisting of two spin-singlet superconducting leads connected via
a single classical spin precessing at the frequency . The presence of
the spin in the junction provides different transmission amplitudes for spin-up
and spin-down quasiparticles as well as a time-dependent spin-flip transmission
term. For a phase biased junction, we show that a steady-state superconducting
charge current flows through the junction and that an out-of-equilibrium
circularly polarized spin current, of frequency , is emitted in the
leads. Detailed understanding of the charge and spin currents is obtained in
the entire parameter range. In the adiabatic regime,
where is the superconducting gap, and for high transparencies of the
junction, a strong suppression of the current takes place around \vp \approx
0 due to an abrupt change in the occupation of the Andreev bound-states. At
higher values of the phase and/or precession frequency, extended
(quasi-particle like) states compete with the bound-states in order to carry
the current. Well below the superconducting transition, these results are shown
to be weakly affected by the back-action of the spin current on the dynamics of
the precessing spin. Indeed, we show that the Gilbert damping due to the
quasi-particle spin current is strongly suppressed at low-temperatures, which
goes along with a shift of the precession frequency due to the condensate. The
results obtained may be of interest for on-going experiments in the field of
molecular spintronics.Comment: 19 pages, 13 figures (v3) Minor modifications per referee's comments.
No change in results. (v2) 2 authors added, 1 reference added (Ref. 25), no
change in the text and result
Non-equilibrium effects in a Josephson junction coupled to a precessing spin
We present a theoretical study of a Josephson junction consisting of two
s-wave superconducting leads coupled over a classical spin. When an external
magnetic field is applied, the classical spin will precess with the Larmor
frequency. This magnetically active interface results in a time-dependent
boundary condition with different tunneling amplitudes for spin-up and
spin-down quasiparticles and where the precession produces spin-flip scattering
processes. We show that as a result, the Andreev states develop sidebands and a
non-equilibrium population which depend on the precession frequency and the
angle between the classical spin and the external magnetic field. The Andreev
states lead to a steady-state Josephson current whose current-phase relation
could be used for characterizing the precessing spin. In addition to the charge
transport, a magnetization current is also generated.This spin current is
time-dependent and its polarization axis rotates with the same precession
frequency as the classical spin.Comment: 20 pages, 26 figure
Variable-range hopping in quasi-one-dimensional electron crystals
We study the effect of impurities on the ground state and the low-temperature
dc transport in a 1D chain and quasi-1D systems of many parallel chains. We
assume that strong interactions impose a short-range periodicicity of the
electron positions. The long-range order of such an electron crystal (or
equivalently, a charge-density wave) is destroyed by impurities. The 3D
array of chains behaves differently at large and at small impurity
concentrations . At large , impurities divide the chains into metallic
rods. The low-temperature conductivity is due to the variable-range hopping of
electrons between the rods. It obeys the Efros-Shklovskii (ES) law and
increases exponentially as decreases. When is small, the metallic-rod
picture of the ground state survives only in the form of rare clusters of
atypically short rods. They are the source of low-energy charge excitations. In
the bulk the charge excitations are gapped and the electron crystal is pinned
collectively. A strongly anisotropic screening of the Coulomb potential
produces an unconventional linear in energy Coulomb gap and a new law of the
variable-range hopping . remains
constant over a finite range of impurity concentrations. At smaller the
2/5-law is replaced by the Mott law, where the conductivity gets suppressed as
goes down. Thus, the overall dependence of on is nonmonotonic.
In 1D, the granular-rod picture and the ES apply at all . The conductivity
decreases exponentially with . Our theory provides a qualitative explanation
for the transport in organic charge-density wave compounds.Comment: 20 pages, 7 figures. (v1) The abstract is abridged to 24 lines. For
the full abstract, see the manuscript (v2) several changes in presentation
per referee's comments. No change in result
On non-supersymmetric conformal manifolds: field theory and holography
We discuss the constraints that a conformal field theory should enjoy to admit exactly marginal deformations, i.e. to be part of a conformal manifold. In particular, using tools from conformal perturbation theory, we derive a sum rule from which one can extract restrictions on the spectrum of low spin operators and on the behavior of OPE coefficients involving nearly marginal operators. We then consider conformal field theories admitting a gravity dual description, and as such a large- expansion. We discuss the relation between conformal perturbation theory and loop expansion in the bulk, and show how such connection could help in the search for conformal manifolds beyond the planar
limit. Our results do not rely on supersymmetry, and therefore apply also outside the realm of superconformal field theories
- …