1,928 research outputs found
Instability of Quark Matter Core in a Compact Newborn Neutron Star With Moderately Strong Magnetic Field
It is explicitly shown that if phase transition occurs at the core of a
newborn neutron star with moderately strong magnetic field strength, which
populates only the electron's Landau levels, then in the -equilibrium
condition, the quark core is energetically much more unstable than the neutron
matter of identical physical condition.Comment: Six pages REVTEX file, one .eps file (included
Neutron star cooling after deep crustal heating in the X-ray transient KS 1731-260
We simulate the cooling of the neutron star in the X-ray transient KS
1731-260 after the source returned to quiescence in 2001 from a long (>~ 12.5
yr) outburst state. We show that the cooling can be explained assuming that the
crust underwent deep heating during the outburst stage. In our best theoretical
scenario the neutron star has no enhanced neutrino emission in the core, and
its crust is thin, superfluid, and has the normal thermal conductivity. The
thermal afterburst crust-core relaxation in the star may be not over.Comment: 5 pages, 2 figures, accepted by MNRAS. In v.2, two references added
and typos correcte
Thermal X-Ray Pulses Resulting From Pulsar Glitches
The non-spherically symmetric transport equations and exact thermal evolution
model are used to calculate the transient thermal response to pulsars. The
three possible ways of energy release originated from glitches, namely the
`shell', `ring' and `spot' cases are compared. The X-ray light curves resulting
from the thermal response to the glitches are calculated. Only the `spot' case
and the `ring' case are considered because the `shell' case does not produce
significant modulative X-rays. The magnetic field () effect, the
relativistic light bending effect and the rotational effect on the photons
being emitted in a finite region are considered. Various sets of parameters
result in different evolution patterns of light curves. We find that this
modulated thermal X-ray radiation resulting from glitches may provide some
useful constraints on glitch models.Comment: 48 pages, 20 figures, submitted to Ap
Increase quality welded joints pipe when using flux cored wire
The article presents a mathematical model of nonlinear thermal processes when multiarc welding of electric welded pipes, allowing to assess changes in the structure of the welded joint obtained using flux cored wire. An experimental study of the influence of various alloying elements of the mechanical properties of the weld metal. Tested microalloying welds through flux cored wire, located on the same arc when welding in multi. According to the results of the study concluded that the efficiency of flux cored wire for welding high strength steel pipe for microalloying of the weld and reducing heat input welding.Представлена математическая модель нелинейных тепловых процессов при многодуговой сварке электросварных труб, позволяющая проводить оценку изменения структуры сварного соединения, полученного при использовании порошковых проволок. Проведено экспериментальное исследование влияния различных легирующих элементов на механические свойства металла шва. Опробовано микролегирование сварных швов через порошковую проволоку, расположенную на одной дуге при многодуговой сварке. По результатам проведенного исследования сделан вывод об эффективности применения порошковой проволоки при сварке высокопрочных трубных сталей для микролегирования сварного шва и снижения погонной энергии сварки
Neutrino emission in neutron matter from magnetic moment interactions
Neutrino emission drives neutron star cooling for the first several hundreds
of years after its birth. Given the low energy ( keV) nature of this
process, one expects very few nonstandard particle physics contributions which
could affect this rate. Requiring that any new physics contributions involve
light degrees of freedom, one of the likely candidates which can affect the
cooling process would be a nonzero magnetic moment for the neutrino. To
illustrate, we compute the emission rate for neutrino pair bremsstrahlung in
neutron-neutron scattering through photon-neutrino magnetic moment coupling. We
also present analogous differential rates for neutrino scattering off nucleons
and electrons that determine neutrino opacities in supernovae. Employing
current upper bounds from collider experiments on the tau magnetic moment, we
find that the neutrino emission rate can exceed the rate through neutral
current electroweak interaction by a factor two, signalling the importance of
new particle physics input to a standard calculation of relevance to neutron
star cooling. However, astrophysical bounds on the neutrino magnetic moment
imply smaller effects.Comment: 9 pages, 1 figur
- …