1,279 research outputs found
Coherent control of quantum systems as a resource theory
Control at the interface between the classical and the quantum world is
fundamental in quantum physics. In particular, how classical control is
enhanced by coherence effects is an important question both from a theoretical
as well as from a technological point of view. In this work, we establish a
resource theory describing this setting and explore relations to the theory of
coherence, entanglement and information processing. Specifically, for the
coherent control of quantum systems the relevant resources of entanglement and
coherence are found to be equivalent and closely related to a measure of
discord. The results are then applied to the DQC1 protocol and the precision of
the final measurement is expressed in terms of the available resources.Comment: 9 pages, 4 figures, final version. Discussions were improved and some
points were clarified. The title was slightly changed to agree with the
published versio
Isospin fluctuations in spinodal decomposition
We study the isospin dynamics in fragment formation within the framework of
an analytical model based on the spinodal decomposition scenario. We calculate
the probability to obtain fragments with given charge and neutron number,
focussing on the derivation of the width of the isotopic distributions. Within
our approach this is determined by the dispersion of N/Z among the leading
unstable modes, due to the competition between Coulomb and symmetry energy
effects, and by isovector-like fluctuations present in the matter that
undergoes the spinodal decomposition. Hence the widths exhibit a clear
dependence on the properties of the Equation of State. By comparing two systems
with different values of the charge asymmetry we find that the isotopic
distributions reproduce an isoscaling relationship.Comment: 18 RevTex4 pages, 6 eps figure
Density dependence of isospin observables in spinodal decomposition
Isotopic fluctuations in fragment formation are investigated in a
quasi-analytical description of the spinodal decomposition scenario. By
exploiting the fluctuation-dissipation relations the covariance matrix of
density fluctuations is derived as a function of the wave vector for nuclear
matter at given values of density, charge asymmetry, temperature, and of the
time that the system spends in the instability region. Then density
fluctuations in ordinary space are implemented with a Fourier transform
performed in a finite cubic lattice. Inside this box, domains with different
density coexist, from which clusters of nucleons eventually emerge. Within our
approach, the isotopic distributions are determined by the N/Z ratio of the
leading unstable isoscalarlike mode and by isovectorlike fluctuations present
in the matter undergoing the spinodal decomposition. Hence the average value of
the N/Z ratio of clusters and the width of the relative distribution reflect
the properties of the symmetry energy. Generating a large number of events,
these calculations allow a careful investigation of the cluster isotopic
content as a function of the cluster density. A uniform decrease of the average
charge asymmetry and of the width of the isotopic distributions with increasing
density is observed. Finally we remark that the results essentially refer to
the early break--up of the system.Comment: Revtex4, 19 pages, 8 eps figures, to be published in Phys. Rev.
Cholinergic suppression: A postsynaptic mechanism of long-term associative learning
Food avoidance learning in the mollusc Pleurobranchaea entails reduction in the responsiveness of key brain interneurons in the feeding neural circuitry, the paracerebral feeding command interneurons (PCNs), to the neurotransmitter acetylcholine (AcCho). Food stimuli applied to the oral veil of an untrained animal depolarize the PCNs and induce the feeding motor program (FMP). Atropine (a muscarinic cholinergic antagonist) reversibly blocks the food-induced depolarization of the PCNs, implicating AcCho as the neurotransmitter mediating food detection. AcCho applied directly to PCN somata depolarizes them, indicating that the PCN soma membrane contains AcCho receptors and induces the FMP in the isolated central nervous system preparation. The AcCho response of the PCNs is mediated by muscariniclike receptors, since comparable depolarization is induced by muscarinic agonists (acetyl-ß -methylcholine, oxotremorine, pilocarpine), but not nicotine, and blocked by muscarinic antagonists (atropine, trifluoperazine). The nicotinic antagonist hexamethonium, however, blocked the AcCho response in four of six cases. When specimens are trained to suppress feeding behavior using a conventional food-avoidance learning paradigm (conditionally paired food and shock), AcCho applied to PCNs in the same concentration as in untrained animals causes little or no depolarization and does not initiate the FMP. Increasing the concentration of AcCho 10-100 times, however, induces weak PCN depolarization in trained specimens, indicating that learning diminishes but does not fully abolish AcCho responsiveness of the PCNs. This study proposes a cellular mechanism of long-term associative learning -- namely, postsynaptic modulation of neurotransmitter responsiveness in central neurons that could apply also to mammalian species
A multilayer panel in cork and natural phase change materials: thermal and energy analysis
This paper presents thermal and energy analysis of a multilayer panel in bio-based cork material and natural phase change materials (PCMs) for the development of prefabricated, recyclable and energy-efficient and autonomous building modules. For this purpose, a calculation tool is developed for the dynamic simulation of the thermal and energy behaviour of the sandwich panel. In particular, through an extensive parametric survey, the panel is sized with the identification of the arrangement of the layers, PCM temperature, and layer thicknesses to optimize the insulating and damping properties, considering typical climatic conditions of the Mediterranean climates of Southern Italy. From the conducted simulations, the types of sandwich panels that have the best insulating and storage characteristics for the building module construction were chosen. The results of these simulations will be used in future research for the preliminary design of tests to be carried out in a climatic chamber and to build a building module in real conditions to be constantly monitored through the automatic instrumental survey of internal and external physical quantities such as temperature, humidity and radiant temperature
Energy Independence of a Small Office Community Powered by Photovoltaic-Wind Hybrid Systems in Widely Different Climates
Hybrid renewable energy systems are an optimal solution for small energy communities’ energy supply. One of the critical issues is the strong correlation of these systems with outdoor climatic conditions. The goal is to make local communities increasingly energy independent. To this end, an in-depth analysis of the behaviour of hybrid photovoltaic (PV)–wind systems powering small office communities in 48 locations around the world characterized by widely varying climates was conducted. System sizes, assumed to be stand-alone or grid-connected, were varied, for a total of 343 system power configurations. Highest satisfied load fraction (SLF) values are obtained with a significant predominance of PV over wind; the trend is more pronounced in dry and continental climates (zones B and D according to the Köppen climate classification). The utilization factor (UF) values of 1 are rarely reached and never in the wind-only or PV-only configurations. In all climates, the grid energy interaction factor (GEIF) values of zero are never reached but come very close. The benefit-cost ratio (BCR) of grid-connected systems is significantly higher than stand-alone systems
Relativistic Approach to Superfluidity in Nuclear Matter
Pairing correlations in symmetric nuclear matter are studied within a
relativistic mean-field approximation based on a field theory of nucleons
coupled to neutral ( and ) and to charged () mesons.
The Hartree-Fock and the pairing fields are calculated in a self-consistent
way. The energy gap is the result of a strong cancellation between the scalar
and vector components of the pairing field. We find that the pair amplitude
vanishes beyond a certain value of momentum of the paired nucleons. This fact
determines an effective cutoff in the gap equation. The value of this cutoff
gives an energy gap in agreement with the estimates of non relativistic
calculations.Comment: 21 pages, REVTEX, 8 ps-figures, to appear in Phys.Rev.C. e-mail:
[email protected]
- …