69,686 research outputs found

    Scalable Compression of Deep Neural Networks

    Full text link
    Deep neural networks generally involve some layers with mil- lions of parameters, making them difficult to be deployed and updated on devices with limited resources such as mobile phones and other smart embedded systems. In this paper, we propose a scalable representation of the network parameters, so that different applications can select the most suitable bit rate of the network based on their own storage constraints. Moreover, when a device needs to upgrade to a high-rate network, the existing low-rate network can be reused, and only some incremental data are needed to be downloaded. We first hierarchically quantize the weights of a pre-trained deep neural network to enforce weight sharing. Next, we adaptively select the bits assigned to each layer given the total bit budget. After that, we retrain the network to fine-tune the quantized centroids. Experimental results show that our method can achieve scalable compression with graceful degradation in the performance.Comment: 5 pages, 4 figures, ACM Multimedia 201

    Experimental study of contact transition control incorporating joint acceleration feedback

    Get PDF
    Joint acceleration and velocity feedbacks are incorporated into a classical internal force control of a robot in contact with the environment. This is intended to achieve a robust contact transition and force tracking performance for varying unknown environments, without any need of adjusting the controller parameters, A unified control structure is proposed for free motion, contact transition, and constrained motion in view of the consumption of the initial kinetic energy generated by a nonzero impact velocity. The influence of the velocity and acceleration feedbacks, which are introduced especially for suppressing the transition oscillation, on the postcontact tracking performance is discussed. Extensive experiments are conducted on the third joint of a three-link direct-drive robot to verify the proposed scheme for environments of various stiffnesses, including elastic (sponge), less elastic (cardboard), and hard (steel plate) surfaces. Results are compared with those obtained by the transition control scheme without the acceleration feedback. The ability of the proposed control scheme in resisting the force disturbance during the postcontact period is also experimentally investigated

    Mean magnetic field generation in sheared rotators

    Get PDF
    A generalized mean magnetic field induction equation for differential rotators is derived, including a compressibility, and the anisotropy induced on the turbulent quantities from the mean magnetic field itself and a mean velocity shear. Derivations of the mean field equations often do not emphasize that there must be anisotropy and inhomogeneity in the turbulence for mean field growth. The anisotropy from shear is the source of a term involving the product of the mean velocity gradient and the cross-helicity correlation of the isotropic parts of the fluctuating velocity and magnetic field, \lb{\bfv}\cdot{\bfb}\rb^{(0)}. The full mean field equations are derived to linear order in mean fields, but it is also shown that the cross-helicity term survives to all orders in the velocity shear. This cross-helicity term can obviate the need for a pre-existing seed mean magnetic field for mean field growth: though a fluctuating seed field is necessary for a non-vanishing cross-helicity, the term can produce linear (in time) mean field growth of the toroidal field from zero mean field. After one vertical diffusion time, the cross-helicity term becomes sub-dominant and dynamo exponential amplification/sustenance of the mean field can subsequently ensue. The cross-helicity term should produce odd symmetry in the mean magnetic field, in contrast to the usually favored even modes of the dynamo amplification in sheared discs. This may be important for the observed mean field geometries of spiral galaxies. The strength of the mean seed field provided by the cross- helicity depends linearly on the magnitude of the cross-helicity.Comment: 15 pages, LaTeX, matches version accepted to ApJ, minor revision

    Cross-Layer Peer-to-Peer Track Identification and Optimization Based on Active Networking

    Get PDF
    P2P applications appear to emerge as ultimate killer applications due to their ability to construct highly dynamic overlay topologies with rapidly-varying and unpredictable traffic dynamics, which can constitute a serious challenge even for significantly over-provisioned IP networks. As a result, ISPs are facing new, severe network management problems that are not guaranteed to be addressed by statically deployed network engineering mechanisms. As a first step to a more complete solution to these problems, this paper proposes a P2P measurement, identification and optimisation architecture, designed to cope with the dynamicity and unpredictability of existing, well-known and future, unknown P2P systems. The purpose of this architecture is to provide to the ISPs an effective and scalable approach to control and optimise the traffic produced by P2P applications in their networks. This can be achieved through a combination of different application and network-level programmable techniques, leading to a crosslayer identification and optimisation process. These techniques can be applied using Active Networking platforms, which are able to quickly and easily deploy architectural components on demand. This flexibility of the optimisation architecture is essential to address the rapid development of new P2P protocols and the variation of known protocols

    Revised research about chaotic dynamics in Manko et al. spacetime

    Full text link
    A recent work by Dubeibe et al. [Phys. Rev. D 75, 023008 (2007)] stated that chaos phenomenon of test particles in gravitational field of rotating neutron stars which are described by Manko, Sanabria-Gomez, and Manko (Manko et al.) metric can only occur when the stars have oblate deformation. But the chaotic motions they found are limited in a very narrow zone which is very close to the center of the massive bodies. This paper argues that this is impossible because the region is actually inside of the stars, so the motions cannot exist at this place. In this paper, we scan all parameters space and find chaos and unstable fixed points outside of stars with big mass-quadrupole moments. The calculations show that chaos can only occur when the stars have prolate deformation. Because real deformation of stars should be oblate, all orbits of test particles around the rotating neutron stars described by Manko et al. solutions are regular. The case of nonzero dipolar magnetic moment has also been taken into account in this study.Comment: 6 pages, 5 figure

    Effect of aluminium sheet surface conditions on feasibility and quality of resistance spot welding

    Get PDF
    A study investigating the effect of sheet surface condition on resistance spot welding (RSW) of aluminium has been carried out. This concentrates on two automotive aluminium alloys; AA5754 and AA6111, used for structural and closure applications respectively. The results show the marked effect that surface condition can have on the RSW process. For AA5754 sheet incomplete removal of a ‘disrupted surface layer’ prior to surface pretreatment is shown to have a detrimental effect on the RSW process. The solid wax lubricant used to assist metal forming leads to unpredictable changes in contact resistance, and consequently affects the process stability. For AA6111 closures the final surface topography can influence the RSW process. Standard ‘mill’ and electro-discharge textured (EDT) finish sheet surfaces were examined and preliminary results suggest that both are suitable for welding. The successful application of RSW of aluminium sheet requires careful consideration of the sheet surface condition. This requires close collaboration between material suppliers and automotive manufacturers

    Momentum Distribution of Near-Zero-Energy Photoelectrons in the Strong-Field Tunneling Ionization in the Long Wavelength Limit

    Full text link
    We investigate the ionization dynamics of Argon atoms irradiated by an ultrashort intense laser of a wavelength up to 3100 nm, addressing the momentum distribution of the photoelectrons with near-zero-energy. We find a surprising accumulation in the momentum distribution corresponding to meV energy and a \textquotedblleft V"-like structure at the slightly larger transverse momenta. Semiclassical simulations indicate the crucial role of the Coulomb attraction between the escaping electron and the remaining ion at extremely large distance. Tracing back classical trajectories, we find the tunneling electrons born in a certain window of the field phase and transverse velocity are responsible for the striking accumulation. Our theoretical results are consistent with recent meV-resolved high-precision measurements.Comment: 5 pages, 4 figure

    Supersymmetric QCD flavor changing top quark decay

    Get PDF
    We present a detailed and complete calculation of the gluino and scalar quarks contribution to the flavour-changing top quark decay into a charm quark and a photon, gluon, or a Z boson within the minimal supersymmetric standard model including flavour changing gluino-quarks-scalar quarks couplings in the right-handed sector. We compare the results with the ones presented in an earlier paper where we considered flavour changing couplings only in the left-handed sector. We show that these new couplings have important consequences leading to a large enhancement when the mixing of the scalar partners of the left- and right-handed top quark is included. Furthermore CP violation in the flavour changing top quark decay will occur when a SUSY phase is taken into account.Comment: 14 pages, latex, 3 figure

    Minimal resonances in annular non-Euclidean strips

    Get PDF
    Differential growth processes play a prominent role in shaping leaves and biological tissues. Using both analytical and numerical calculations, we consider the shapes of closed, elastic strips which have been subjected to an inhomogeneous pattern of swelling. The stretching and bending energies of a closed strip are frustrated by compatibility constraints between the curvatures and metric of the strip. To analyze this frustration, we study the class of "conical" closed strips with a prescribed metric tensor on their center line. The resulting strip shapes can be classified according to their number of wrinkles and the prescribed pattern of swelling. We use this class of strips as a variational ansatz to obtain the minimal energy shapes of closed strips and find excellent agreement with the results of a numerical bead-spring model. Within this class of strips, we derive a condition under which a strip can have vanishing mean curvature along the center line.Comment: 14 pages, 13 figures. Published version. Updated references and added 2 figure
    • 

    corecore