11,867 research outputs found
A real scale simulator for high frequency LEMP
The real scale simulator is described which was designed by the Centre d'Etudes de Gramat (CEG) to study the coupling of fast rise time Lightning Electromagnetic pulse in a fighter aircraft. The system capability of generating the right electromagnetic environment was studied using a Finite Difference Time Domain (FDTD) computer program. First, data of inside stresses are shown. Then, a time domain and a frequency domain approach is exposed and compared
Avian malaria is absent in juvenile colonial herons (Ardeidae) but not Culex pipiens mosquitoes in the Camargue, Southern France
Apicomplexan blood parasites Plasmodium and Haemoproteus (together termed “Avian malaria”) and Leucocytozoon are widespread, diverse vector-transmitted blood parasites of birds, and conditions associated with colonial nesting in herons (Ardeidae) and other waterbirds appear perfect for their transmission. Despite studies in other locations reporting high prevalence of parasites in juvenile herons, juvenile Little Egrets (Egretta garzetta) previously tested in the Camargue, Southern France, had a total absence of malaria parasites. This study tested the hypotheses that this absence was due to insufficient sensitivity of the tests of infection; an absence of infective vectors; or testing birds too early in their lives. Blood was sampled from juveniles of four species shortly before fledging: Little Egret (n = 40), Cattle Egret (Bubulcus ibis; n = 40), Black-crowned Night-Heron (Nycticorax nycticorax, n = 40), and Squacco Heron (Ardeola ralloides; n = 40). Sensitive nested-Polymerase Chain Reaction was used to test for the presence of parasites in both birds and host-seeking female mosquitoes captured around the colonies. No malaria infection was found of in any of the heron species. Four different lineages of Plasmodium were detected in pooled samples of female Culex pipiens mosquitoes, including two in potentially infective mosquitoes. These results confirm that the absence of malaria parasites previously demonstrated in Little Egret is not due to methodological limitations. Although the prevalence of infection in mosquitoes was low, conditions within the colonies were suitable for transmission of Plasmodium. These colonial heron species may have evolved strategies for resisting malaria infection through physiological or behavioral mechanisms
A pseudo-matched filter for chaos
A matched filter maximizes the signal-to-noise ratio of a signal. In the
recent work of Corron et al. [Chaos 20, 023123 (2010)], a matched filter is
derived for the chaotic waveforms produced by a piecewise-linear system.
Motivated by these results, we describe a pseudo-matched filter, which removes
noise from the same chaotic signal. It consists of a notch filter followed by a
first-order, low-pass filter. We compare quantitatively the matched filter's
performance to that of our pseudo-matched filter using correlation functions in
a simulated radar application. On average, the pseudo-matched filter performs
with a correlation signal-to-noise ratio that is 2.0 dB below that of the
matched filter. Our pseudo-matched filter, though somewhat inferior in
comparison to the matched filter, is easily realizable at high speed (> 1 GHz)
for potential radar applications
On large deviation regimes for random media models
The focus of this article is on the different behavior of large deviations of
random subadditive functionals above the mean versus large deviations below the
mean in two random media models. We consider the point-to-point first passage
percolation time on and a last passage percolation time
. For these functionals, we have and
. Typically, the large deviations for such
functionals exhibits a strong asymmetry, large deviations above the limiting
value are radically different from large deviations below this quantity. We
develop robust techniques to quantify and explain the differences.Comment: Published in at http://dx.doi.org/10.1214/08-AAP535 the Annals of
Applied Probability (http://www.imstat.org/aap/) by the Institute of
Mathematical Statistics (http://www.imstat.org
A theoretical analysis of the electromagnetic environment of the AS330 super Puma helicopter external and internal coupling
Numerical techniques such as Finite Difference Time Domain (FDTD) computer programs, which were first developed to analyze the external electromagnetic environment of an aircraft during a wave illumination, a lightning event, or any kind of current injection, are now very powerful investigative tools. The program called GORFF-VE, was extended to compute the inner electromagnetic fields that are generated by the penetration of the outer fields through large apertures made in the all metallic body. Then, the internal fields can drive the electrical response of a cable network. The coupling between the inside and the outside of the helicopter is implemented using Huygen's principle. Moreover, the spectacular increase of computer resources, as calculations speed and memory capacity, allows the modellization structures as complex as these of helicopters with accuracy. This numerical model was exploited, first, to analyze the electromagnetic environment of an in-flight helicopter for several injection configurations, and second, to design a coaxial return path to simulate the lightning aircraft interaction with a strong current injection. The E field and current mappings are the result of these calculations
Subwavelength position sensing using nonlinear feedback and wave chaos
We demonstrate a position-sensing technique that relies on the inherent
sensitivity of chaos, where we illuminate a subwavelength object with a complex
structured radio-frequency field generated using wave chaos and a nonlinear
feedback loop. We operate the system in a quasi-periodic state and analyze
changes in the frequency content of the scalar voltage signal in the feedback
loop. This allows us to extract the object's position with a one-dimensional
resolution of ~\lambda/10,000 and a two-dimensional resolution of ~\lambda/300,
where \lambda\ is the shortest wavelength of the illuminating source.Comment: 4 pages, 4 figure
- …