
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

On Commands and Executions: Tyrants, Spectres and Vagabonds

Gauthier, D.

Publication date
2018
Document Version
Final published version
Published in
Executing Practices
License
CC BY-SA

Link to publication

Citation for published version (APA):
Gauthier, D. (2018). On Commands and Executions: Tyrants, Spectres and Vagabonds. In H.
Pritchard, E. Snodgrass, & M. Tyżlik-Carver (Eds.), Executing Practices (pp. 69-84). (DATA
Browser; Vol. 6). Open Humanities Press. http://www.oapen.org/search?identifier=1002520

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:09 Mar 2023

https://dare.uva.nl/personal/pure/en/publications/on-commands-and-executions-tyrants-spectres-and-vagabonds(153e80d0-e503-4b77-89c4-38723e5023bd).html
http://www.oapen.org/search?identifier=1002520

DATA browser 06
EXECUTING PRACTICES

Geoff Cox
Olle Essvik
Jennifer Gabrys
Francisco Gallardo
David Gauthier
Linda Hilfling Ritasdatter
Brian House
Yuk Hui
Marie Louise Juul Søndergaard
Peggy Pierrot
Andy Prior
Helen Pritchard
Roel Roscam Abbing
Audrey Samson
Kasper Hedegård Schiølin
Susan Schuppli
Femke Snelting
Eric Snodgrass
Winnie Soon
Magdalena Tyżlik-Carver

DATA browser 06
EXECUTING PRACTICES

Edited by Helen Pritchard,
Eric Snodgrass and Magda
Tyżlik-Carver

Published by
Open Humanities Press 2018
Copyright © 2018 the authors

This is an open access book,
licensed under the Creative
Commons Attribution By Attribution
Share Alike License. Under this
license, authors allow anyone to
download, reuse, reprint, modify,
distribute, and/or copy their work
so long as the authors and source
are cited and resulting derivative
works are licensed under the same
or similar license. No permission
is required from the authors or the
publisher. Statutory fair use and
other rights are in no way affected
by the above. Read more about
the license at creativecommons.org/
licenses/by-sa/4.0/

Figures, text and other media
included within this book may
be under different copyright
restrictions.

Freely available at
data-browser.net/db06.html

ISBN (print): 978-1-78542-056-6
ISBN (PDF): 978-1-78542-057-3
ISBN (ePUB): 978-1-78542-058-0

DATA browser series template
designed by Stuart Bertolotti-Bailey.

Book layout and typesetting by
Mark Simmonds & Esther Yarnold

The cover image is derived from
Multi by David Reinfurt, a software
app that updates the idea of the
multiple from industrial production
to the dynamics of the information
age. Each cover presents an iteration
of a possible 1,728 arrangements,
each a face built from minimal
typographic furniture, and from
the same source code.
www.o-r-g.com/apps/multi

69

On Commands and
Executions: Tyrants,
Spectres and Vagabonds
David Gauthier

It is difficult to address the notion of command and execution
without addressing that of tyranny. The concept of execution
is an eerie construct that at once implies a prescription and
a proscription in its suggestion that a rule or command is
imposed and enforced on an indeterminate substrate (subjects,
objects, matter or otherwise). Thus, it also suggests a certain
type of violence that is at once effected and effaced, or,
differently put, execution insinuates a despotic foreclosure.
In that sense, the problematics of execution are central to the
notion of control, which speaks both to the order of reason that
it imposes and by which it is assessed. It also points to moments
and milieux of erasure where a given order vanishes in
indeterminacy —intervals and gaps that the order itself creates
and forbids, its necessary residual exterior.
 While the software/hardware divide has been a recurrent
topic of conversation within the field of Software Studies,
I argue that the subject needs to be pushed forward to consider
the under-theorised notions of command/execution. Moving
from a conception of software as ideology to a conception of
software as tyranny, this article shows how the symbolic order
of the law, which underpins notions of command and instruc-
tion, leads to an impasse when confronted with the question
of execution. In turn, rather than seeking an understanding
of execution from the despotic perspective of commands and
instructions, the current inquiry identifies the various loci
where such a perspective collapses and it petitions for a prac-
tice of execution that conceives of it as an event in its own right
rather than a mere afterthought.

Software as ideology
In order to illustrate the problematic the notion of execution
entails, I will first focus on a particular debate about source
code and ideology that took place between Wendy Hui Kyong
Chun (2005, 2008) and Alexander R. Galloway (2006).
This debate was partly prompted by the nascent field of

70

EXECUTING PRACTICES

Software Studies which elected “software”as the prime
object of study of New Media discourse (Fuller 2006). In her
articles, Chun warns that in divorcing software from hardware
and in focusing on its discursive and semantic aspects, one
effects an epistemological and political move since “software
perpetuates certain notions of seeing as knowing ... creating
an invisible system of visibility. The knowledge software offers
is as obfuscatory as it is revealing” (2005, 27). To further grasp
the arguments of the debate, it is worth highlighting how the
advent of Computer Science, with its emphasis on symbolic
programming languages, drastically changed the ways in
which computing was conceived from the 1950s onwards.
Programming and coding practices, prior to the advent of
computing languages, were affairs of crafty local conventions
and customs that were highly tailored for individual machines
across various sites (Nofre et al. 2014, 49). With the growing
commercialisation of computing machinery, the concept of
programming languages came about as a means to standardise
these local conventions and customs, encapsulating them into
syntactic and semantic forms that would present traits of both
mathematical notations and natural language:

The notion of a programming language, which is
connected to the idea of universality, became central to
this exercise of boundary work that sought to disengage
the activity of programming from local conventions,
and to transform it into a transcendent and universal
body of knowledge. From this endeavour, programming
languages and algorithms emerged as epistemic
objects stripped of any marks that would associate them
with specific hardware. (Nofre et al. 2014, 66)

The consequence of the advent of “universal” languages
was not only that programming acquired a type of “machine
independence” (source code able to be built and executed on
a variety of machines), but more importantly, it brought about
an amassing of linguistic objects written in various “universal”
programming languages, and which, in turn, developed an
epistemic and discursive life of their own.Programming
languages could thus carve out their own computing
invariant — a transcendent “island of semantic stability”
(66) — by rendering invisible the machine that was once
literally in plain sight. It is clear, then, that the universalisation
of programming as language produced a kind of stratification

71

and disjunction of computing that cut off the tacit and innate
relationship programming had, and indeed still has, with the
material, processual and “crafty” aspects of hardware which,
consequently, became an invisible and illegible “black box”
(Brown and Carr qtd. in Nofre et al. 2014, 54).
 Speaking of this disjunction between the legible symbolic
programming language and the illegible “black box”, Chun
posits that, as a result, “software is a functional analog to
ideology” (Chun 2005, 43). This analogy between software
as an object in itself and as an ideology stems from the fact
that software instantiates a strict division and upholds an illu-
sory dialectical logic of cause and effects (input and output)
between infrastructure — the obscure and illegible “black
box”— and superstructure — manifest and legible program-
ming languages. This rupture speaks to the foreclosure of
language over the matter of computing, an operation that
totalises the linguistic regime of programming by concealing
the totality of its material substrate. Inevitably, then, ques-
tions of operations and meaning are (re)claimed by this
linguistic regime alone in that it is the only regime capable of
lending itself to “objective” interpretations and, in so doing,
legitimatises itself. By locating the birth of symbolic program-
ming languages at the grave of material hardware, Computer
Science put forth a type of “source” (code) reading of computer
programs solely based on human-readability, as opposed to
machine-readability, for instance. Addressing this divide, Chun
concludes by noting that “because of the histories and gazes
[it] erase[s]; and because of the future [it] points toward[s] …
[s]oftware has become a commonsense shorthand for culture
and hardware a shorthand for nature” (46).
 To grasp the potency of Chun’s warning, it is important
to turn to Galloway’s intervention and show how his framings,
according to Chun, further highlight the illusory conflation
of code (software) and execution (hardware). In his article
“Language Wants To Be Overlooked”, Galloway (2006)
acknowledges that code necessitates a hardware infrastructure
in order to function; he writes, “code exists first and foremost
as commands issued to a machine. Code essentially has no
other reason for being than instructing some machine how to
act” (326). We can clearly see how Galloway’s concept of code
sustains this split between infrastructure (the machine) and
superstructure (code as written commands issued to control

ON COMMANDS AND EXECUTIONS

72

EXECUTING PRACTICES

the machine) when he famously declares that “code is the only
language that is executable” (325). The paramount problem
with this conception of command and control, instruction and
execution, code and machine is that, as Chun rightly puts it,
“[in making] the argument that code is automatically
executable, the process of execution itself must not only
be erased, but source code also must be conflated with its
executable version” (2008, 305). This erasure of execution,
by conflating linguistic commands and machine operations,
has the corollary of reducing notions of contingent computing
events and processes solely to written instructions which
command them. In other words, in conflating code and
execution one conflates logos with action, explicitly erasing
all the problematics, discrepancies and variations action entails
(303). Going further with her analysis, as I will discuss in the
next section, Chun posits that symbolic code thus becomes law
wherein executive, legislative and juridical power coincide to
establish a pure state of exception—“code as law as police”,
where the gap between word and force, and logic and praxis
is effectively effaced (2011, 101).
 Leaving aside Chun’s discussion of the law for now,
I would like to emphasise that Galloway’s concept of software
as language or machine (2006, 327) is solely concerned
with the manipulation of symbols. The symbolic order of the
command, to put it this way, is put in a prescriptive relationship
with its physical “support”. The processual and temporal gap
existing between the issuing of a command and the return of
results is denied any agency whatsoever as the logic of symbols
and codes supersedes the one of their entropic medium, a
non-processual or eventless notion of execution that seems
to be symptomatic of some software oriented media theories.
In this regard, both Galloway’s and Lev Manovich’s (2001)
notions of transcoding are worth examining. For Manovich, “to
‘transcode’ something is to translate it into another format”
(47). Similarly, for Galloway, software is a prime exemplar of
“technical transcoding without figuration” (2006, 319), where
the various “lower level” layers composing the subsystems of
the machine (logic gates, registers, etc.) are put into a relation
of pure equivalence. As Galloway notes, “one of the outcomes of
this perspective is that each layer is technologically related, if
not entirely equivalent, to all the other layers” (327).1
We thus can clearly see that for both theorists the temporal

73

and material process by which the machine codes and decodes
is completely bracketed since their concept of transcoding
solely privileges the outcome of this process, that is, the
resulting written format or data structure (323). For Galloway,
“there is a privileged moment in which the written becomes
purely machinic and back again” (319), for which, then,
everything that is machinic ought to be equivalent. While
Galloway does not develop his notion of “machinic” further than
simply alluding to a complex aggregate of “‘lower’ symbolic
interactions of voltages through logic gates” (319), he does
differentiate between conceiving of software as language and
conceiving of software as machine (327) in positing that “code
is machinic first and linguistic second” (326). While it can be
argued that software commands differ from “illocutionary”
commands and that software is dissimilar to “speech acts”,
the point of the current inquiry is to examine the notion of
command as such. It aims at problematising how this notion
relies on a given symbolic order (arithmetical, logical,
algorithmic, legal, machinic, etc.) that substitutes itself for
the event that is execution, which, I argue, has nothing to do
with symbols alone but rather points elsewhere.

Software as Tyranny
While arguments depicting software as being the “machinic
turn” of ideology, in the case of Chun’s earlier essays (2005,
2008), or allegory, in the case of Galloway (2006), seem
convincing, I intend to look elsewhere to account for the tension
between command and execution, word and action. I find it
peculiar, to say the least, that the Church-Turing thesis in
its physical form, which I believe lurks underneath these
discussions about symbolic algorithms and their physical
instantiation, is framed in terms of ideology or allegory.
Therefore, in what could be considered a bold move, I follow
the conviction that “ideology has no importance: what matters
is not ideology … but the organisation of power” (Guattari
and Lotringer 2009, 37). Thus, rather than seeking inspiration
from a critique of ideology, as do Chun and Galloway, I turn
to critiques of violence and theories of law and authority
that address how concepts of law are enforced through rules,
instructions and commands. While Chun’s later essay (2011)
does turn to a critique of violence, in which she develops the
notion of software as law, or code as law, she does not address

ON COMMANDS AND EXECUTIONS

74

EXECUTING PRACTICES

and focus on the intricacy of the tandem command-execution
in the manner I am suggesting here.2 To be clear, my aim is
not to reify a false idea that symbols are immaterial constructs
and thus unreal, or to reduce software to hard-ware, or to argue
that infrastructure supersedes superstructure, but rather to
theoretically look at how symbolic commands are made to
operate in the first place.
 According to the mathematical form of the Church-Turing
thesis, which is mainly concerned with effective procedures,
executability and reliability can be defined as such:

Executability: the procedure consists of a finite number
of deterministic instructions (i.e. instructions
determining a unique next step in the procedure),
which have finite and unambiguous specifications
commanding the execution of a finite number of
primitive operations.
Reliability: when the procedure terminates, the
procedure generates the correct value of the function
for each argument after a finite number of primitive
operations are performed. (Piccinini 2011, 737)

From these informal descriptions, it is worth examining how a
command (instruction) is necessarily active in the sense that
it is prescriptive: it requests and constrains action to fulfil the
promise of its execution which, in turn, should shed expected
effects. Yet the command itself does not act per se, but rather
prescribes an action that it, in turn, assesses or judges
(“correct value”). A distinction must thus be made between
what Jacques Derrida calls “performative” and “constative”
(1990, 969), where the former denotes the act of execution and
the latter the part of judgement that assesses the effects of the
former in light of its initial commanding. In short, the constative,
which both definitions of executability and reliability speak
to, forms a hermeneutic loop (interpretation, action/execution,
interpretation), where the central moment of action — the
primitive operation — is at once effected and effaced by
interpretation itself.3 Hence, the constative always presumes
the performative, “that is to say [its] essential precipitation,
which never proceeds without a certain dissymmetry and some
quality of violence” (969).
 According to the aforementioned definitions, to do justice
to an instruction, a primitive operation has to generate a correct
output. However, as Derrida points out, there is no justice of

75

the performative as such, but only just-ness, that is, performing
according to prior conventions, methods, or protocols; the
performative, he writes, “cannot be just, in the sense of
justice ... it always maintains within itself some irruptive
violence, it no longer responds to the demands of theoretical
rationality” (969). The implicitness and precipitateness of the
performative buried within the constative hermeneutic loop
speaks, in more general terms, of the conflation of command
and execution as discussed in the previous section. What this
conflation does, I argue, is to veil the “irrational” violence of
the performative that still, necessarily, constitutes the core
of the constative. While there may be rules, methods and
protocols prescribed by a given command or instruction, the
urgency and precipitateness of the performative make it act,
nonetheless, “in the night of non-knowledge and non-rule”
(967). What the notion of execution harbours then is an act that
is at once a “non-knowledge”, a “non-rule”, a “non-protocol”, a
“non-method”. In other words, the concept of execution points
to the reverse side of the law, that is, its necessary primitive
exterior.
 The rapport between the interior and exterior of the law
begs further nuancing. For Derrida, “violence is not exterior to
the order of droit [law]. It threatens it from within” (989). Yet, as
I argued above, the violence of execution stands as a primitive
outside to the symbolic order of law; it operates in an inordi-
nately different register as “non-knowledge” and ultimately as
“non-law” or “out-law”. The order of law, the hermeneutic loop
of the constative, as I discussed above, may well comprise a
certain placeholder for the moment of action/execution, but it
nonetheless is articulated by a totally different language
(if actual language there is), which at once prompts execution
as such only to efface it after the fact by substituting it with an
interpretation of its deciphered effects: a correct instruction for
a correct value. Yet the moment of action/execution still remains
illegible from the perspective of the constative. The problem-
atic of the symbolic order is its despotic attempt to codify, and
therefore foreclose everything by means of substitution, giving
it the grounds and monopoly to justify itself as a righteous
transcendental order capable of “decreeing to be violent, this
time in the sense of an outlaw, anyone who does not recognize
it” (987).

ON COMMANDS AND EXECUTIONS

76

EXECUTING PRACTICES

 There are thus two types of outlaws I want to unearth here:
(1) the heretic outlaw that has been judged as such for not
recognising the law’s order (not following conventions, method,
protocol, etc.) and consequently ruled “outside” by decree —
an error or “miscomputation” (Piccinini 2007, 505) — and (2)
the “autochthon” outlaw that executes and hence founds the
constative loop outright, and who therefore stands “outside”
the law by necessity — primitive operations. Both vouch for,
from the perspective of the law, a sense of legible illegibility, or
“foreignness”, since they both imply a passage to action as a
moment of non-law, a transgression of order.
 For Derrida, the moments of action/execution are,
by themselves, moments of “mystique”. He writes, “[these]
moments supposing we can isolate them, are terrifying
moments … [They] are themselves, and in their very
violence, uninterpretable or indecipherable. That is what I
am calling ‘mystique’” (1990, 991). What Derrida points to
with “uninterpretable” and “indecipherable” is the limit of
interpretation as such. Derrida’s “mystique” speaks to the
event that is execution and how symbolic instructions feign
“that of which is in progress” during the event; he writes
“[i]t is precisely in this ignorance that the eventness of the
event consists, what we naively call its presence” (991). This
ignorance [non-savoir] as a moment of deferring or drifting
of interpretation, as a suspension of the law, is paradoxically
equated to its own presence and fosters its own becoming.
Law is a spectre during the moment of execution, it is a
presence in absence. As a result, execution always exceeds its
interpretation or interpretation tout court: “[it] is the moment
in which the foundation of law remains suspended in the void
or over the abyss, suspended by a pure performative act that
would not have to answer to or before anyone” (991–3). Thus,
the first aforementioned outlaw may well be condemned as
heretic — the position of the error or miscomputation — but it
nonetheless harbours an eccentricity that exceeds the law and
its instruction, an eccentricity that has to answer to or before
no one.
 Unpacking the term heresy sheds light on what the
becoming of the law entails at the moment of action/execution.
Etymologically, heresy is derived from the greek αἱρετικός
[hairetikos], which, accor-ding to Thayer’s Greek-English
lexicon, denotes at once “fitted or able to take or choose”

77

and “schismatic, factious, a follower of the false doctrine”.
The former sense of the term designates an action (taking or
choosing) that, as mentioned above, exceeds interpretation,
while the latter denotes an interpretation or judgement as such,
which takes place after the fact/action. Both senses thus speak
to the becoming of heresy from action to its judgment. As a
result, at the moment of action/execution, the becoming of the
law coincides with the becoming of heresy. In fact, Derrida tells
us, these two becomings are exactly the same. The moment
of conservation of the law, by which the hermeneutic loop is
instantiated and heretic positions are decreed as such, is the
same as the moment of the founding the law. Any position
before the law, such as the heretic position, calls for a potential
repetition of itself: “[a] position is already iterability, a call for
self-conserving repetition” (997). In other words, a position
before the law permits and promises, it defies and puts forward
a vow to repeat and iterate.
 Thus what I have termed the heretic outlaw above is in fact
the same conceptual personage as the autochthon outlaw. The
figure of the outlaw, then, “would no longer be before the law,
rather [it] would be before a law not yet determined, before the
law as before a law not existing yet, a law yet to come” (993).
Put differently, law’s transgression is before the law in the sense
that it is an infringement of an existing law yet, at the same
time, it points to the potential commencement of another: a
proscription becoming prescription. There is no pure founding
position of the law as such, only iterations of it, as “conservation
in its turn refounds, so that it can conserve what it claims to
found” (997). Hence, the heretic position is at once a position of
commencement and commandment, a promise of a new order;
and “even if the promise is not kept in fact, iterability inscribes
the promise as guard in the most irruptive instant of foundation”
(997). In this way, the law threatens outlaws, always necessarily,
as much as outlaws threaten the law from within, always
necessarily. Besides, isn’t the heretic position a key position
in that it allows for a critique of violence and the law in the
first place?
 What this amounts to, following Derrida’s notion that there
is no strict opposition between the conservation and foundation
of the law, no position before the law that does not necessarily
imply its own iteration, and vice versa, is that the position
of the heretic is as forcible as the one of the police, which,

ON COMMANDS AND EXECUTIONS

78

EXECUTING PRACTICES

by decree, is supposed to enforce the law. In fact, the terms
heretic and police are metonyms that refer to mere positions
during the moment of action/execution. As stated above,
during this event, the whole order of the law is suspended,
interpretation deferred, and “that of which is in progress”
during this interval equates to a symbolic void, a moment of
“non-law”. There can only be symbolic substitutes for what
amounts to mere positional acts during execution. At this
level of reality, betrayal and enforcement are both in states of
becoming, that is, not yet individuated or, rather, judged as
such. This is precisely the paradox of law: the insurmountable
distance it creates between its prescriptive instructions and its
actual “presence-in-action”, or, rather, “absence-in-action”.
 In light of this, Chun’s insight of conceiving code as law can
be thought of anew. In equating code to law and law to police,
thus producing a triad of code as law as police, she writes,
“[code] as law as police, like the state of exception, makes
executive, legislative and juridical powers coincide. Code as
law as police erases the gap between force and writing … in a
complementary fashion to the state of exception” (2011, 101).
I beg to differ from this perspective and keep the moment of
execution as a moment of suspension of the law, a moment of
“non-law”, a moment of “non-writing”, yet a moment of force
and intensity, as I argue in the next section. What Derrida shows
us, by equating law’s conservation and foundation, is that the
legislative and executive powers already coincide, albeit in a
strange way, and thus, that the state of exception is no exception
after all. Yet, the strangeness and clandestinity of the coinciding
of the legal and executive comes not from their coinciding
as such but more from the fact that law is always necessarily
non-present at the moment of action/execution. Derrida talks
about the spectre of the law to account for this non-presence,
or absence. Thus, Chun’s motto of code as law as police can
be refactored as code as law as spectre. A position of law is a
promise at the moment of execution, a becoming yet to shed the
iteration that will “conserve what it claims to found” (Derrida
1990, 997).

Outlaws, itinerants, and Vagabonds
So far, I have shown that the notion of execution from the
perspective of the law merely points to its primitive exterior.
What if this perspec-tive were to be reversed? What would

79

a practice of execution then entail, rather than producing a
sequence of instructions? It is not because the law loses its
ground and becomes phantom-like that “that of which is in
progress” during the moment of execution amounts to nothing,
a pure void. There is nothing particularly profound in effecting
this reversal of perspective, taking the viewpoint of the heretic
outlaw, so to speak. In a sense, that is precisely what Gilbert
Simondon’s critique of hylomorphism is all about.
 To be rather brief at this point, the hylomorphic scheme
conceives of both organic or inorganic individuals as
engendered by the conjugate of form and matter. One of the
classic examples used to illustrate the form-matter dynamic
is that of a brick. Simply put, according to the hylomorphic
scheme, the production of a brick would be as follows:
give a passive lump of clay (potential) a parallelepiped
form (actualisation). In other words, a pure form —the
parallelepiped — is applied to an indeterminate raw lump
of material — the clay — so the lump itself undergoes a
transformation and takes the shape of a parallelepiped and,
in turn, sheds an individual brick. In this scheme, the form itself
is of prime importance since it directs matter in its process of
transformation from an undetermined shape to a determined
one; put differently, form actualises matter’s latent potential.
Form is thus the sole source of actualisation that governs the
transformation of the lump of raw clay — it determines the
indeterminate.
 Simondon acknowledges that there is a notion of a genesis,
or more precisely of an ontogenesis, involved in hylomorphism,
yet it is an “ontogenesis in reverse” (2013, 23).4 What Simondon
does is to reverse this reverse, so to speak, by devising
concepts that allow for “knowing the individual through
individuation rather than [knowing] individuation from the
individual” (24). Instead of conceiving of ontogenesis as a
restricted and narrow concept denoting the genesis of a given
individual (as hylomorphism does), Simondon conceives of it as
a “partial and relative resolution manifesting itself in a system
containing potentials and involving a certain incompatibility
in relation to itself, incompatibility composed of forces and
tension” (25). In a sense, Simondon’s notion of individuation
stands against the telos of hylomorphism, that is, against
erecting the Individual as a privileged origin (form) and finality
(brick). The individual he puts forth is thus grasped as a relative

ON COMMANDS AND EXECUTIONS

80

EXECUTING PRACTICES

reality, never fully realised, and the process of individuation
perpetual rather than transitive.
 The tension and contrasts between the form-matter couple
of hylomorphism are even more clearly and vividly exposed
by the discourse on the instruction-execution divide I have
critiqued. As argued earlier, positions before the law are
always mere potentials at the moment of action/execution, and
thus the law itself is always in a process of becoming rather
than final, as it can never truly be founded once and for all.
Because of this problem of origin and finality of the law — its
incompatibility in relation to itself — a rapport can be drawn
here with Simondon’s critique of hylomorphism. For Simondon,
the technical operation that “imposes a form to a passive and
indeterminate material” is not only a phantom-like operation,
but more importantly is tyrannical. He writes:

[It] is not only an abstract operation considered by the
spectator that sees what comes in and out of the work-
shop without knowing what the actual elaboration is. It
is essentially an operation commanded by a free man
[of the Republic] and executed by the slave … The true
passivity of matter is its abstract availability under the
given order that others will execute. (51)

Simondon’s image of the spectator (or should I say spectre)
who remains outside of the workshop is most evocative here:
the workshop is hylomorphism’s own “outside”—“[t]he hylo-
morphic scheme corresponds to the knowledge of a man who
remains outside of the workshop and only considers what comes
in and what comes out of it” (46). The same outside perspective
could be said of a programmer who considers digital execu-
tion solely from his computer’s command line. His remark of the
situation of the slave can be linked to the one of the outlaws and
the heretics depicted in the previous section. The hylomorphic
scheme, like that of the law, is necessarily founded on primitive
external entities that it appropriates by despotic means. Yet, in
his treatise, Simondon argues that to truly grasp the process of
form-taking, such as the moulding of a brick, “it is not enough to
enter the workshop and work with the artisan: one should enter
the mould itself to follow the operation of form taking at different
levels of magnitude of physical reality” (2013, 46).
 Moving from question of law to questions of science, Gilles
Deleuze and Félix Guattari engage with notions of interiority
and exteriority of the law, and frame the aforementioned

81

perspectival reverses in these terms:
A distinction must be made between two types of
science, or scientific procedures: one consists in
“reproducing,” the other in “following.” The first
involves reproduction, iteration and reiteration; the
other, involving itineration, is the sum of the itinerant,
ambulant sciences … following is not at all the same
thing as reproducing, and one never follows in order to
reproduce … Reproducing implies the permanence of
a fixed point of view that is external to what is
reproduced: watching the flow from the bank. But
following is something different from the ideal of
reproduction. Not better, just different. One is obliged
to follow when one is in search of the “singularities”
of a matter, or rather of a material, and not out to
discover a form. (Deleuze and Guattari 1987, 372)

What thus becomes clear is how software as law institutes
this transcendental fixed point of view — the aforementioned
constative loop — by isolating, stratifying, discretising, cate-
gorising and foreclosing the spatiotemporal continuum the
process of execution articulates. Computer Science, as the
science that legislates, is thus responsible for abstracting
moments and locales from this continuum and structuring
logical concepts and categories out of these abstractions.
Yet the theorematic coordinates such a science puts forth are
based on various spatiotemporal cuts and erasures; in other
words, from a spatiotemporal continuum a logical series is
extracted that, as a result, features as many forbidden zones or
vanishing points as there are terms in the series. The theorem-
atic power of Computer Science comes from its given authority
in decreeing laws and concepts that produce the sacrosanct
apodictic apparatus of empty repetition — that is, the repetition
of the same and the similar. Without this apodictic apparatus,
Computer Science would be destined to follow the progression
of a given spatiotemporal phenomenon at ground zero and thus
lose its transcendental, and fixed, point of view.
 Execution asks to be followed, not iterated. Practices of
execution entice an itineration within the residual outside
of software, that is, an itineration at ground level where the
theorematic coordinates of software are projected on the
ground. In order to account for the spatiotemporal individuation
of the event of execution proper, one has to step out of

ON COMMANDS AND EXECUTIONS

82

EXECUTING PRACTICES

Computer Science’s apodictic apparatus of categorisation and
traverse the zones of indeterminacy this apparatus constructs.
To follow is to cross the interstice’s in-between states,
in-between commands and in-between rules and laws. It is to
traverse these moments of non-law, non-knowledge, non-rule,
non-protocol, non-method; in short, to follow is to transgress
the imposed dominant order and, in so doing, to problematise
the rationale behind its disposition of minoring an outside. The
reason I have, in the previous section, focused on the notion of
outlaw and positions of heresy before the law is to call attention
to power relations inherent in this process of minoring. The
problem of execution concerns the domain of epistemology
as well as that of work and labour, be it human or non-human.
Not only does the creation of a residual outside raise questions
of legibility and illegibility in terms of knowledge, but further,
it promulgates certain types of social practices and work
hierarchies that perpetuate types of despotism and tyranny
based on certain valuations of work and systems of visibility
and invisibility based on this very outside.5

 While one may be lured into looking for notions of
execution in Computer Science books or to practice execution
from his/her computer’s command line, I suggest one has to
look elsewhere and engage differently with code and circuitry
to truly grasp and follow the event that is execution. As short
concluding remark, I would like to suggest that luckily, another
type of heretic “science” of execution, or rather a practice,
already exists that is not usually featured in Computer Science
literature per se but is, nonetheless, always and necessarily
performed when producing a piece of hardware or a piece
of software — that is the practice of debugging. True “occult
science”, debugging requires one to follow the thread of
execution of a given program, that is, to follow the itineration
and vagabonding of signs and signals within the architecture
of a given machine at a given time. A bug, error, failure, or
miscomputation necessarily begs to be followed. It is an event
itself, or, rather, speaks to the individuation of execution in and
for itself. It requires that the illusory disjunction or stratification
of instruction and execution, signs and matter, and the
discretised dynamics this disjunction puts forth be suspended
and problematised. What the practice of debugging highlights
is the fragile conjunction of signs and signals in focusing on the
technical operations that mediates them in time and space.

83

To debug is to open bare the foreclosure of the aforementioned
symbolic order of the law and enter Simondon’s mould, so to
speak: to observe and intervene during the event that links
the two technological half-chains of the sign and the signals,
the opcode and the dipole.
 Debugging, as liminal and vagabond science, as well as an
effective practice of execution, is potent in problematising and
debunking the tyrannic minoring of an outside some Computer
Science concepts necessarily produce, and, in turn, that some
Software Studies discourses reproduce. After all, debugging is
about problems and problematisation, may it be of a piece of
machinery or a piece of theory. In fact, problematics is its only
mode of operation. There are no software stacks nor interfaces
along the path of the vagabond outlaw, only curious spectres.

notes
 1. The same emphasis on the

symbolic outcome of an execution
can be said of Galloway’s equating
two quadratic equations written
in a “high-level” and “low-level”
programming languages (2006, 319).
Surely both equations, expressed
differently, shed the same numerical
solution, yet their respective
technical unfolding during execution
are nothing but equal, as Chun
points out (2008, 306–7).

2. See the present collection’s
contribution “RuntimeException() —
Critique of Software Violence” by
Geoff Cox, who also discusses
software in terms of violence, in a
different, albeit complementary,
way to this chapter.

3. The notion of interpretation
here does not necessarily denotes
a semantic interpretation as a
comprehension of the meaning
of a command or result in a
mathematical or linguistic sense.
The loop structure I am describing
here holds for purely mechanistic
conceptions of computing such as
the one put forth by Piccinini (2008,
2007). Interpretation, in this case,
thus relates to notions of internal
semantics rather than external ones

(Piccinini 2008, 214–5).
4. All citations from Simondon are

my translations.
5. See Linda Hilfling Ritasdatter’s

contribution “BUGS IN THE WAR
ROOM — Economies and /of
Execution” in the present collection,
where she addresses on question
software maintenance and labour in
terms of neo-colonial hegemony.

References
Chun, Wendy Hui Kyong. 2005.

“On Software, or the Persistence
of Visual Knowledge.” Grey Room
18: 26–51.

——. 2008. “On ‘Sourcery,’ or Code
as Fetish.” Configurations 16 (3):
299–324.

——. 2011. “Crisis, Crisis, Crisis,
or Sovereignty and Networks.”
Theory, Culture & Society 28 (6):
91–112.

Deleuze, Gilles, and Félix Guattari.
1987. A Thousand Plateaus:
Capitalism and Schizophrenia.
Minneapolis: University of
Minnesota Press.

Derrida, Jacques. 1989. “Force De
Loi: Le Fondement Mystique De
L’Autorité / Deconstruction and
the Possibility of Justice.” Cardozo
Law Review 11: 920–1046.

ON COMMANDS AND EXECUTIONS

84

EXECUTING PRACTICES

Fuller, Matthew. 2006. “Software
Studies Workshop.” Piet Zwart
Institute — Software Studies
Workshop. http://web.archive.
org/web/20100327185154/
http://pzwart.wdka.hro.nl/mdr/
Seminars2/softstudworkshop.

Galloway, Alexander R. 2006.
“Language Wants To Be
Overlooked: On Software and
Ideology.” Journal of Visual
Culture 5 (3): 315–31.

Guattari, Félix, and Sylvère Lotringer.
2009. Chaosophy: Texts and
Interviews 1972-1977. Semiotext(e)
Foreign Agents Series. Los
Angeles, CA: Semiotext(e).

Manovich, Lev. 2002. The Language
of New Media. MIT Press ed.
Leonardo. Cambridge, MA:
MIT Press.

Nofre, David, Mark Priestley, and
Gerard Alberts. 2014. “When
Technology Became Language:
The Origins of the Linguistic
Conception of Computer
Programming, 1950–1960.”
Technology and Culture 55 (1):
40–75.

Piccinini, Gualtiero. 2007.
“Computing Mechanisms.”
Philosophy of Science 74 (4):
501–26.

——. 2008. “Computation without
Representation.” Philosophical
Studies 137 (2): 205–41.

——. 2011. “The Physical Church —
Turing Thesis: Modest or
Bold?” The British Journal for
the Philosophy of Science 62 (4):
733–69.

Simondon, Gilbert. 2005.
L’individuation à la lumière des
notions de forme et d’information.
Krisis. Grenoble: Millon.

	9781785420566_cov_front.pdf
	6x9_blank-page_pdfx1-complient
	Pritchard--Snodgrass--Tyżlik-Carver_2018_Executing-Practices_interior
	9781785420566_cov_back

