826 research outputs found

    Energy Dissipation and Trapping of Particles Moving on a Rough Surface

    Full text link
    We report an experimental, numerical and theoretical study of the motion of a ball on a rough inclined surface. The control parameters are DD, the diameter of the ball, θ\theta, the inclination angle of the rough surface and EkiE_{ki}, the initial kinetic energy. When the angle of inclination is larger than some critical value, θ>θT\theta>\theta_{T}, the ball moves at a constant average velocity which is independent of the initial conditions. For an angle θ<θT\theta < \theta_{T}, the balls are trapped after moving a certain distance. The dependence of the travelled distances on EkiE_{ki}, DD and θ\theta. is analysed. The existence of two kinds of mechanisms of dissipation is thus brought to light. We find that for high initial velocities the friction force is constant. As the velocity decreases below a certain threshold the friction becomes viscous.Comment: 8 pages RevTeX, 12 Postscript figure

    Complexion-mediated martensitic phase transformation in Titanium

    No full text
    The most efficient way to tune microstructures and mechanical properties of metallic alloys lies in designing and using athermal phase transformations. Examples are shape memory alloys and high strength steels, which together stand for 1,500 million tons annual production. In these materials, martensite formation and mechanical twinning are tuned via composition adjustment for realizing complex microstructures and beneficial mechanical properties. Here we report a new phase transformation that has the potential to widen the application window of Ti alloys, the most important structural material in aerospace design, by nanostructuring them via complexion-mediated transformation. This is a reversible martensitic transformation mechanism that leads to a final nanolaminate structure of α″ (orthorhombic) martensite bounded with planar complexions of athermal ω (a–ω, hexagonal). Both phases are crystallographically related to the parent β (BCC) matrix. As expected from a planar complexion, the a–ω is stable only at the hetero-interface

    Complexion-mediated martensitic phase transformation in Titanium

    Get PDF
    The most efficient way to tune microstructures and mechanical properties of metallic alloys lies in designing and using athermal phase transformations. Examples are shape memory alloys and high strength steels, which together stand for 1,500 million tons annual production. In these materials, martensite formation and mechanical twinning are tuned via composition adjustment for realizing complex microstructures and beneficial mechanical properties. Here we report a new phase transformation that has the potential to widen the application window of Ti alloys, the most important structural material in aerospace design, by nanostructuring them via complexion-mediated transformation. This is a reversible martensitic transformation mechanism that leads to a final nanolaminate structure of α″ (orthorhombic) martensite bounded with planar complexions of athermal ω (a–ω, hexagonal). Both phases are crystallographically related to the parent β (BCC) matrix. As expected from a planar complexion, the a–ω is stable only at the hetero-interface.European Commission. Framework Programme for Research and Innovation (FP7/2007–2013))/ERC Grant agreement 290998 'SmartMet’)Innovative Research Team in University (IRT13034)National Basic Research Program of China (973 Program) (2014CB644003)China. Ministry of Science and Technology. National Key Research and Development Program (2016YFB0701302)National Natural Science Foundation of China (51501145)National Natural Science Foundation of China (51320105014)National Natural Science Foundation of China (51621063

    Instability of dilute granular flow on rough slope

    Full text link
    We study numerically the stability of granular flow on a rough slope in collisional flow regime in the two-dimension. We examine the density dependence of the flowing behavior in low density region, and demonstrate that the particle collisions stabilize the flow above a certain density in the parameter region where a single particle shows an accelerated behavior. Within this parameter regime, however, the uniform flow is only metastable and is shown to be unstable against clustering when the particle density is not high enough.Comment: 4 pages, 6 figures, submitted to J. Phys. Soc. Jpn.; Fig. 2 replaced; references added; comments added; misprints correcte

    Noninvasive detection of a ruptured aneurysm at a basilar artery fenestration with submillimeter multisection CT angiography

    Get PDF
    The criterion standard for the detection of intracranial aneurysms is digital subtraction angiography. MR imaging and CT provide good accuracy in the evaluation of brain arteries and aneurysms. We herein report a case of a ruptured aneurysm at a basilar artery fenestration. The diagnosis was assessed with 16-row multisection CT angiography and was confirmed by using digital subtraction angiography. The patient was successfully treated with coil placement

    Initial-state effects in scanned-energy-mode photoelectron diffraction

    Get PDF
    By a combination of experimental data [from the Ni (111) (2×2)-K structure], model calculations, and simple formal theory, it shown that a strong initial-state effect exists in backscattering photoelectron diffraction, which can be ascribed to the parity of the emitted photoelectron source wave field. Unlike the initial-state effect recently discussed in forward scattering photoelectron (and Auger electron) diffraction, which is a spherical wave effect only present due to the close proximity of the emitter and scatterer, this parity effect in the backscattering geometry exists even in the lowest order approximation of the scattering, i.e. the plane wave approximation
    • …
    corecore