10,533 research outputs found
Implications of very rapid TeV variability in blazars
We discuss the implications of rapid (few-minute) variability in the TeV flux
of blazars, which has been observed recently with the HESS and MAGIC
telescopes. The variability timescales seen in PKS 2155-304 and Mrk 501 are
much shorter than inferred light-crossing times at the black hole horizon,
suggesting that the variability involves enhanced emission in a small region
within an outflowing jet. The enhancement could be triggered by dissipation in
part of the black hole's magnetosphere at the base of the outflow, or else by
instabilities in the jet itself. By considering the energetics of the observed
flares, along with the requirement that TeV photons escape without producing
pairs, we deduce that the bulk Lorentz factors in the jets must be >50. The
distance of the emission region from the central black hole is less
well-constrained. We discuss possible consequences for multi-wavelength
observations.Comment: 5 pages, no figures, accepted for publication in Monthly Notices of
the Royal Astronomical Society Letter
Recommended from our members
Influence of surgery and rehabilitation conditioning on psychophysiological fitness
The purpose of this study was to assess changes in psychophysiological fitness following reconstructive knee surgery and early phase (2.5 months) physical rehabilitation. Nine patients (7 male, 2 female; mean age, 29.9 years) electing to undergo anterior cruciate ligament reconstructive surgery (central third, bone-patella tendon-bone graft) were assessed on four separate assessment occasions post-surgery. Repeated measures ANOVAs showed significant condition (injured/non-injured leg) by test occasion (2 weeks pre-surgery and 6, 8 and 10 weeks post-surgery) interactions for knee ligamentous compliance (anterior tibiofemoral displacement), peak force and electromechanical delay associated with the knee flexors of the injured and noninjured legs (F3,24 = 4.7 to 6.6; p < 0.01), together with individualized emotional profile disturbance scores that were significantly less at 10 weeks post-surgery compared to pre-surgery, 6 weeks and 8 weeks post-surgery (F3,24 = 7.6; p < 0.01). Spearman rank correlation coefficients identified significant relationships between musculoskeletal fitness and emotional profile scores at pre-surgery (r = 0.69–0.72; p < 0.05) and at 8 weeks post-surgery (r = 0.70–0.73; p < 0.05). The 6 Bi-POMS subscales and the 12 ERAIQ responses found inconsistent patterns of response and relationships across the assessment occasions. Overall, the patterning of changes and associations amongst emotional performance profile discrepancy scores in conjunction with those scores from indices of musculoskeletal fitness performance capability offered important support for the efficacy of an approach which integrates self-perceptive and objective measurements of fitness capability during rehabilitation following surgery to a synovial joint
Hallelujahs From Portsmouth Campmeeting
https://place.asburyseminary.edu/firstfruitsheritagematerial/1126/thumbnail.jp
The Bacterial Photosynthetic Reaction Center as a Model for Membrane Proteins
Membrane proteins participate in many fundamental cellular processes. Until recently, an understanding of the function and properties of membrane proteins was hampered by an absence of structural information at the atomic level. A landmark achievement toward understanding the structure of membrane proteins was the crystallization (1) and structure determination (2-5) the photosynthetic reaction center (RC) from the purple bacteria Rhodopseudomonas viridis, followed by that of the RC from Rhodobacter sphaeroides (6-17). The RC is an integral membrane protein-pigment complex, which carries out the initial steps of photosynthesis (reviewed in 18). RCs from the purple bacteria Rps. viridis and Rb. sphaeroides are composed of three membrane-associated protein subunits (designated L, M, and H), and the following cofactors: four bacteriochlorophylls (Bchl or B), two bacteriopheophytins (Bphe or [phi]), two quinones, and a nonheme iron. The cofactors are organized into two symmetrical branches that are approximately related by a twofold rotation axis (2, 8). A central feature of the structural organization of the RC is the presence of 11 hydrophobic [alpha]-helixes, approximately 20-30 residues long, which are believed to represent the membrane-spanning portion of the RC (3, 9). Five membrane-spanning helixes are present in both the L and M subunits, while a single helix is in the H subunit. The folding of the L and M subunits is similar, consistent with significant sequence similarity between the two chains (19-25). The L and M subunits are approximately related by the same twofold rotation axis that relates the two cofactor branches.
RCs are the first membrane proteins to be described at atomic resolution; consequently they provide an important model for discussing the folding of membrane proteins. The structure demonstrates that [alpha]-helical structures may be adopted by integral membrane proteins, and provides confirmation of the utility of hydropathy plots in identifying nonpolar membrane-spanning regions from sequence data. An important distinction between the folding environments of water-soluble proteins and membrane proteins is the large difference in water concentration surrounding the proteins. As a result, hydrophobic interactions (26) play very different roles in stabilizing the tertiary structures of these two classes of proteins; this has important structural consequences. There is a striking difference in surface polarity of membrane and water-soluble proteins. However, the characteristic atomic packing and surface area appear quite similar.
A computational method is described for defining the position of the RC in the membrane (10). After localization of the RC structure in the membrane, surface residues in contact with the lipid bilayer were identified. As has been found for soluble globular proteins, surface residues are less well conserved in homologous membrane proteins than the buried, interior residues. Methods based on the variability of residues between homologous proteins are described (13); they are useful (a) in defining surface helical regions of membrane and water-soluble proteins and (b) in assigning the side of these helixes that are exposed to the solvent. A unifying view of protein structure suggests that water-soluble proteins may be considered as modified membrane proteins with covalently attached polar groups that solubilize the proteins in aqueous solution
Hydrophobic organization of membrane proteins
Membrane-exposed residues are more hydrophobic than buried interior residues in the transmembrane regions of the photosynthetic reaction center from Rhodobacter sphaeroides. This hydrophobic organization is opposite to that of water-soluble proteins. The relative polarities of interior and surface residues of membrane and water soluble proteins are not simply reversed, however. The hydrophobicities of interior residues of both membrane and water-soluble proteins are comparable, whereas the bilayer-exposed residues of membrane proteins are more hydrophobic than the interior residues, and the aqueous-exposed residues of water-soluble proteins are more hydrophilic than the interior residues. A method of sequence analysis is described, based on the periodicity of residue replacement in homologous sequences, that extends conclusions derived from the known atomic structure of the reaction center to the more extensive database of putative transmembrane helical sequences
The Minimum Description Length Principle and Model Selection in Spectropolarimetry
It is shown that the two-part Minimum Description Length Principle can be
used to discriminate among different models that can explain a given observed
dataset. The description length is chosen to be the sum of the lengths of the
message needed to encode the model plus the message needed to encode the data
when the model is applied to the dataset. It is verified that the proposed
principle can efficiently distinguish the model that correctly fits the
observations while avoiding over-fitting. The capabilities of this criterion
are shown in two simple problems for the analysis of observed
spectropolarimetric signals. The first is the de-noising of observations with
the aid of the PCA technique. The second is the selection of the optimal number
of parameters in LTE inversions. We propose this criterion as a quantitative
approach for distinguising the most plausible model among a set of proposed
models. This quantity is very easy to implement as an additional output on the
existing inversion codes.Comment: Accepted for publication in the Astrophysical Journa
An Isomorphous Replacement Method for Phasing Twinned Structures
A linear least-squares formulation of the method of isomorphous replacement is presented. With data from untwinned crystals, this approach is shown to be equivalent to the phasing representation developed by Hendrickson & Lattman [Acta Cryst. (1970). B26, 136-143]. A general method for calculating the most probable phase is described and applied to the higher- dimensional problem of phase determination for twinned structures. A method for calculating the best phase with intensity data from twinned crystals is also presented. The dependences of these phasing procedures on the number of derivatives and accuracy of the data sets are evaluated in test calculations
Thermal receptivity of free convective flow from a heated vertical surface: linear waves
Numerical techniques are used to study the receptivity to small-amplitude thermal disturbances of the boundary layer flow of air which is induced by a heated vertical flat plate. The fully elliptic nonlinear, time-dependent Navier–Stokes and energy equations are first solved to determine the steady state boundary-layer flow, while a linearised version of the same code is used to determine the stability characteristics. In particular we investigate (i) the ultimate fate of a localised thermal disturbance placed in the region near the leading edge and (ii) the effect of small-scale surface temperature oscillations as means of understanding the stability characteristics of the boundary layer. We show that there is a favoured frequency of excitation for the time-periodic disturbance which maximises the local response in terms of the local rate of heat transfer. However the magnitude of the favoured frequency depends on precisely how far from the leading edge the local response is measured. We also find that the instability is advective in nature and that the response of the boundary layer consists of a starting transient which eventually leaves the computational domain, leaving behind the large-time time-periodic asymptotic state. Our detailed numerical results are compared with those obtained using parallel flow theory
Critical review of the impacts of grazing intensity on soil organic carbon storage and other soil quality indicators in extensively managed grasslands
Acknowledgements This work contributes to the N-Circle project (grant number BB/N013484/1), and CINAg (BB/N013468/1) Virtual Joint Centres on Agricultural Nitrogen (funded by the Newton Fund via UK BBSRC/NERC), U-GRASS (grant number NE/M016900/1), the Belmont Forum/FACCE-JPI DEVIL project (grant number NE/M021327/1), Soils-R-GGREAT (grant number NE/P019455/1), ADVENT (grant number NE/M019713/1), Sêr Cymru LCEE-NRN project, Climate-Smart Grass and the Scottish Government’s Strategic Research Programme.Peer reviewedPublisher PD
- …