32 research outputs found

    Buried waveguides in Nd:YLF crystals obtained by femtosecond laser writing under double line approach

    Get PDF
    In this paper, we present buried waveguides fabricated by fs laser writing in Nd3+ doped YLF crystal under double line approach (Miura et al. in Appl. Phys. Lett. 71:3329–3331, 1997). The waveguides were made by focusing two consecutive optical breakdown tracks (OBT) separated by about 20 μm. To make the optimal OBT, we focused the fs-laser pulses 200 μm below surface at intensities above the OB threshold for the material and controlled the writing speed. The guiding structures were fabricated by using a Chirped Pulse Amplification (CPA) femtosecond (fs) laser system. We chose the optimal writing parameters in order to obtain suitable waveguides, using around 3 μJ energy and writing speed from 15 to 50 μm/s. After optically exploring the waveguides by end-fire coupling, the guiding structures showed good optical performance. Guiding index profiles were retrieved from modal analysis by using BeamProp (RSoft) commercial software. This spatial distribution of the index increment, taking into account a lower refractive barrier on the OBT region plus the compressed region between the tracks, was obtained correctly fitting profiles modes. Finally, optical spectroscopy measurements were also performed in the waveguides. The results showed that the luminescence properties of Nd3+ ions are preserved in the waveguides compared with the values obtained for bulk.This work was partially supported by Agencia Nacional de Promoción Científica y Tecnólogica. (Argentina) under project PICT-2575 and CONICET (Argentina) under project PIP 0394 and by “Ministerio de Educación y Ciencia,” Spain (Grant no FIS2009-09522 and Consolider Program SAUUL CSD2007-00013). D.B. wishes to thank Comisión de Investigaciones Científicas (Bs. As., Argentina) for his student fellowship

    Blood flow and coherent vortices in the normal and aneurysmatic aortas: a fluid dynamical approach to intra-luminal thrombus formation

    Get PDF
    Abdominal aortic aneurysms (AAAs) are frequently characterized by the development of an intra-luminal thrombus (ILT), which is known to have multiple biochemical and biomechanical implications. Development of the ILT is not well understood, and shear–stress-triggered activation of platelets could be the first step in its evolution. Vortical structures (VSs) in the flow affect platelet dynamics, which motivated the present study of a possible correlation between VS and ILT formation in AAAs. VSs educed by the λ2-method using computational fluid dynamics simulations of the backward-facing step problem, normal aorta, fusiform AAA and saccular AAA were investigated. Patient-specific luminal geometries were reconstructed from computed tomography scans, and Newtonian and Carreau–Yasuda models were used to capture salient rheological features of blood flow. Particularly in complex flow domains, results depended on the constitutive model. VSs developed all along the normal aorta, showing that a clear correlation between VSs and high wall shear stress (WSS) existed, and that VSs started to break up during late systole. In contrast, in the fusiform AAA, large VSs developed at sites of tortuous geometry and high WSS, occupying the entire lumen, and lasting over the entire cardiac cycle. Downward motion of VSs in the AAA was in the range of a few centimetres per cardiac cycle, and with a VS burst at that location, the release (from VSs) of shear-stress-activated platelets and their deposition to the wall was within the lower part of the diseased artery, i.e. where the thickest ILT layer is typically observed. In the saccular AAA, only one VS was found near the healthy portion of the aorta, while in the aneurysmatic bulge, no VSs occurred. We present a fluid-dynamics-motivated mechanism for platelet activation, convection and deposition in AAAs that has the potential of improving our current understanding of the pathophysiology of fluid-driven ILT growth

    Tau (297‐391) forms filaments that structurally mimic the core of paired helical filaments in Alzheimer’s disease brain

    Get PDF
    The constituent paired helical filaments (PHFs) in neurofibrillary tangles are insoluble intracellular deposits central to the development of Alzheimer’s disease (AD) and other tauopathies. Full‐length tau requires the addition of anionic cofactors such as heparin to enhance assembly. We have shown that a fragment from the proteolytically stable core of the PHF, tau 297‐391 known as ‘dGAE’, spontaneously forms cross‐β‐containing PHFs and straight filaments under physiological conditions. Here, we have analysed and compared the structures of the filaments formed by dGAE in vitro with those deposited in the brains of individuals diagnosed with AD. We show that dGAE forms PHFs that share a macromolecular structure similar to those found in brain tissue. Thus, dGAEs may serve as a model system for studying core domain assembly and for screening for inhibitors of tau aggregation

    Conservation research in times of COVID-19 - the rescue of the northern white rhino

    Get PDF
    COVID-19 has changed the world at unprecedented pace. The measures imposed by governments across the globe for containing the pandemic have severely affected all facets of economy and society, including scientific progress. Сonservation research has not been exempt from these negative effects, which we here summarize for the BioRescue project, aiming at saving the northern white rhinoceros (Ceratotherium simum cottoni), an important Central African keystone species, of which only two female individuals are left. The development of advanced assisted reproduction and stem-cell technologies to achieve this goal involves experts across five continents. Maintaining international collaborations under conditions of national shut-down and travel restrictions poses major challenges. The associated ethical implications and consequences are particularly troublesome when it comes to research directed at protecting biological diversity – all the more in the light of increasing evidence that biodiversity and intact ecological habitats might limit the spread of novel pathogens

    Flow disturbances in stent-related coronary evaginations: a computational fluid-dynamic simulation study

    No full text
    Aims: Angiographic ectasias and aneurysms in stented segments have been associated with late stent thrombosis. Using optical coherence tomography (OCT), some stented segments show coronary evaginations reminiscent of ectasias. The purpose of this study was to explore, using computational fluid-dynamic (CFD) simulations, whether OCT-detected coronary evaginations can induce local changes in blood flow. Methods and results: OCT-detected evaginations are defined as outward bulges in the luminal vessel contour between struts, with the depth of the bulge exceeding the actual strut thickness. Evaginations can be characterised cross ectionally by depth and along the stented segment by total length. Assuming an ellipsoid shape, we modelled 3-D evaginations with different sizes by varying the depth from 0.2-1.0 mm, and the length from 1-9 mm. For the flow simulation we used average flow velocity data from non-diseased coronary arteries. The change in flow with varying evagination sizes was assessed using a particle tracing test where the particle transit time within the segment with evagination was compared with that of a control vessel. The presence of the evagination caused a delayed particle transit time which increased with the evagination size. The change in flow consisted locally of recirculation within the evagination, as well as flow deceleration due to a larger lumen - seen as a deflection of flow towards the evagination. Conclusions: CFD simulation of 3-D evaginations and blood flow suggests that evaginations affect flow locally, with a flow disturbance that increases with increasing evagination size

    In vitro fertilization program in white rhinoceros

    No full text
    The Anthropocene is marked by a dramatic biodiversity decline, particularly affecting the family Rhinocerotidae. Three of five extant species are listed as Critically Endangered (Sumatran, Javan, Black rhinoceros), one as Vulnerable (Indian rhinoceros), and only one white rhino (WR) subspecies, the Southern white rhinoceros (SWR), after more than a century of successful protection is currently classified as Near Threatened by the IUCN, while numbers again are declining. Conversely, in 2008, the SWR's northern counterpart and second WR subspecies, the Northern white rhinoceros (NWR), was declared extinct in the wild. Safeguarding these vanishing keystone species urgently requires new reproductive strategies. We here assess one such strategy, the novel in vitro fertilization program in SWR and - for the first time NWR - regarding health effects, donor-related, as well as procedural factors. Over the past 8 years, we performed 65 procedures in 22 white rhinoceros females (20 SWR and 2 NWR) comprising hormonal ovarian stimulation, ovum pick-up (OPU), in vitro oocyte maturation, fertilization, embryo culture, and blastocyst cryopreservation, at an efficiency of 1.0 ± 1.3 blastocysts per OPU, generating 22 NWR and 29 SWR blastocysts for the future generation of live offspring
    corecore