1,555 research outputs found
Field-Dependent Hall Effect in Single Crystal Heavy Fermion YbAgGe below 1K
We report the results of a low temperature (T >= 50 mK) and high field (H <=
180 kOe) study of the Hall resistivity in single crystals of YbAgGe, a heavy
fermion compound that demonstrates field-induced non-Fermi-liquid behavior near
its field-induced quantum critical point. Distinct features in the anisotropic,
field-dependent Hall resistivity sharpen on cooling down and at the base
temperature are close to the respective critical fields for the field-induced
quantum critical point. The field range of the non-Fermi-liquid region
decreases on cooling but remains finite at the base temperature with no
indication of its conversion to a point for T -> 0. At the base temperature,
the functional form of the field-dependent Hall coefficient is field direction
dependent and complex beyond existing simple models thus reflecting the
multi-component Fermi surface of the material and its non-trivial modification
at the quantum critical point
Spin Glass and ferromagnetism in disordered Cerium compounds
The competition between spin glass, ferromagnetism and Kondo effect is
analysed here in a Kondo lattice model with an inter-site random coupling
between the localized magnetic moments given by a generalization of
the Mattis model which represents an interpolation between ferromagnetism and a
highly disordered spin glass. Functional integral techniques with Grassmann
fields have been used to obtain the partition function. The static
approximation and the replica symmetric ansatz have also been used. The
solution of the problem is presented as a phase diagram giving {\it
versus} where is the temperature, and are the
strengths of the intrasite Kondo and the intersite random couplings,
respectively. If is small, when temperature is decreased, there is a
second order transition from a paramagnetic to a spin glass phase. For lower
, a first order transition appears between the spin glass phase and a
region where there are Mattis states which are thermodynamically equivalent to
the ferromagnetism. For very low , the Mattis states become stable. On
the other hand, it is found as solution a Kondo state for large
values. These results can improve the theoretical description of the well known
experimental phase diagram of .Comment: 17 pages, 5 figures, accepted Phys. Rev.
Magnetoelectric effects in an organo-metallic quantum magnet
We observe a bilinear magnetic field-induced electric polarization of 50 in single crystals of NiCl-4SC(NH) (DTN). DTN forms a
tetragonal structure that breaks inversion symmetry, with the highly polar
thiourea molecules all tilted in the same direction along the c-axis.
Application of a magnetic field between 2 and 12 T induces canted
antiferromagnetism of the Ni spins and the resulting magnetization closely
tracks the electric polarization. We speculate that the Ni magnetic forces
acting on the soft organic lattice can create significant distortions and
modify the angles of the thiourea molecules, thereby creating a magnetoelectric
effect. This is an example of how magnetoelectric effects can be constructed in
organo-metallic single crystals by combining magnetic ions with electrically
polar organic elements.Comment: 3 pages, 3 figure
Low temperature specific heat of the heavy fermion superconductor PrOsSb
We report the magnetic field dependence of the low temperature specific heat
of single crystals of the first Pr-based heavy fermion superconductor
PrOsSb. The low temperature specific heat and the magnetic phase
diagram inferred from specific heat, resistivity and magnetisation provide
compelling evidence of a doublet ground state and hence superconductivity
mediated by quadrupolar fluctuations. This establishes PrOsSb as a
very strong contender of superconductive pairing that is neither
electron-phonon nor magnetically mediated.Comment: 4 pages, 4 figure
Thermodynamics of the Spin Luttinger-Liquid in a Model Ladder Material
The phase diagram in temperature and magnetic field of the metal-organic,
two-leg, spin-ladder compound (C5H12N)2CuBr4 is studied by measurements of the
specific heat and the magnetocaloric effect. We demonstrate the presence of an
extended spin Luttinger-liquid phase between two field-induced quantum critical
points and over a broad range of temperature. Based on an ideal spin-ladder
Hamiltonian, comprehensive numerical modelling of the ladder specific heat
yields excellent quantitative agreement with the experimental data across the
complete phase diagram.Comment: 4 pages, 4 figures, updated refs and minor changes to the text,
version accepted for publication in Phys. Rev. Let
Macroscopic evidence for quantum criticality and field-induced quantum fluctuations in cuprate superconductors
We present macroscopic experimental evidence for field-induced microscopic
quantum fluctuations in different hole- and electron-type cuprate
superconductors with varying doping levels and numbers of CuO layers per
unit cell. The significant suppression of the zero-temperature in-plane
magnetic irreversibility field relative to the paramagnetic field in all
cuprate superconductors suggests strong quantum fluctuations due to the
proximity of the cuprates to quantum criticality.Comment: 3 figures. To appear in Phys. Rev. B, Rapid Communications (2007).
For correspondence, contact: Nai-Chang Yeh (e-mail: [email protected]
- …
