4,470 research outputs found
Measuring Entangled Qutrits and Their Use for Quantum Bit Commitment
We produce and holographically measure entangled qudits encoded in transverse
spatial modes of single photons. With the novel use of a quantum state
tomography method that only requires two-state superpositions, we achieve the
most complete characterisation of entangled qutrits to date. Ideally, entangled
qutrits provide better security than qubits in quantum bit-commitment: we model
the sensitivity of this to mixture and show experimentally and theoretically
that qutrits with even a small amount of decoherence cannot offer increased
security over qubits.Comment: Paper updated to match published version; 5 pages, 4 figures, images
have been included at slightly lower quality for the archiv
A quantitative model of the initiation of DNA replication in Saccharomyces cerevisiae predicts the effects of system perturbations.
BackgroundEukaryotic cell proliferation involves DNA replication, a tightly regulated process mediated by a multitude of protein factors. In budding yeast, the initiation of replication is facilitated by the heterohexameric origin recognition complex (ORC). ORC binds to specific origins of replication and then serves as a scaffold for the recruitment of other factors such as Cdt1, Cdc6, the Mcm2-7 complex, Cdc45 and the Dbf4-Cdc7 kinase complex. While many of the mechanisms controlling these associations are well documented, mathematical models are needed to explore the network's dynamic behaviour. We have developed an ordinary differential equation-based model of the protein-protein interaction network describing replication initiation.ResultsThe model was validated against quantified levels of protein factors over a range of cell cycle timepoints. Using chromatin extracts from synchronized Saccharomyces cerevisiae cell cultures, we were able to monitor the in vivo fluctuations of several of the aforementioned proteins, with additional data obtained from the literature. The model behaviour conforms to perturbation trials previously reported in the literature, and accurately predicts the results of our own knockdown experiments. Furthermore, we successfully incorporated our replication initiation model into an established model of the entire yeast cell cycle, thus providing a comprehensive description of these processes.ConclusionsThis study establishes a robust model of the processes driving DNA replication initiation. The model was validated against observed cell concentrations of the driving factors, and characterizes the interactions between factors implicated in eukaryotic DNA replication. Finally, this model can serve as a guide in efforts to generate a comprehensive model of the mammalian cell cycle in order to explore cancer-related phenotypes
First principles calculation of polarization induced interfacial charges in GaN/AlN heterostructures
We propose a new method to calculate polarization induced interfacial charges
in semiconductor heterostructures using classical electrostatics applied to
real-space band diagrams from first principles calculations and apply it to
GaN/AlN heterostructures with ultrathin AlN layers (4-6 monolayers). We show
that the calculated electric fields and interfacial charges are independent of
the exchange-correlation functionals used (local-density approximation and
hybrid functionals). We also find the calculated interfacial charge of (6.8 +/-
0.4) x 10^13 cm-2 to be in excellent agreement with experiments and the value
of 6.58 x 10^13 cm-2 calculated from bulk polarization constants, validating
the use of bulk constants even for very thin films.Comment: 3 pages, 2 figures; submitted to Applied Physics Letter
Toward Specification-Guided Active Mars Exploration for Cooperative Robot Teams
As a step towards achieving autonomy in space exploration missions, we consider a cooperative robotics system consisting of a copter and a rover. The goal of the copter is to explore an unknown environment so as to maximize knowledge about a science mission expressed in linear temporal logic that is to be executed by the rover. We model environmental uncertainty as a belief space Markov decision process and formulate the problem as a two-step stochastic dynamic program that we solve in a way that leverages the decomposed nature of the overall system. We demonstrate in simulations that the robot team makes intelligent decisions in the face of uncertainty
On the Utility of Model Learning in HRI
Fundamental to robotics is the debate between model-based and model-free learning: should the robot build an explicit model of the world, or learn a policy directly? In the context of HRI, part of the world to be modeled is the human. One option is for the robot to treat the human as a black box and learn a policy for how they act directly. But it can also model the human as an agent, and rely on a “theory of mind” to guide or bias the learning (grey box). We contribute a characterization of the performance of these methods under the optimistic case of having an ideal theory of mind, as well as under different scenarios in which the assumptions behind the robot's theory of mind for the human are wrong, as they inevitably will be in practice. We find that there is a significant sample complexity advantage to theory of mind methods and that they are more robust to covariate shift, but that when enough interaction data is available, black box approaches eventually dominate
- …
