
 

Cancer Insights through Macropinocytosis: 
A Role for Sorting Nexins? 

Jack T.H. Wang 
School of Chemistry and Molecular Biosciences 

The University of Queensland, Australia 
 

Markus C. Kerr and Rohan D. Teasdale 
Institute for Molecular Biosciences 

The University of Queensland, Australia 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/15153487?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1    Introduction 

Macropinocytosis is an actin-driven endocytic process, whereby membrane ruffles fold back onto the 
plasma membrane to form large (> 0.2 µm in diameter) endocytic organelles called macropinosomes 
(Swanson & Watts, 1995). The rapid and large fluid-carrying capacity of macropinosomes is central to 
their role in the immune response, possessing great potential for antigen sampling from the environment 
as the amount of material internalized greatly exceeds that of other endocytic pathways (Norbury, 2006). 
Studies of oncogenic signaling and cellular responses to growth factors have also implicated macropino-
cytosis in the molecular mechanisms of cancer and tumorigenesis. Treatment with Epidermal Growth 
Factor (EGF), Platelet-Derived Growth Factor (PDGF) and Hepatocyte Growth Factor/Scatter Factor 
(HGF/SF) - ligands associated with uncontrolled cell proliferation in cancerous tissue - have all been 
shown to rapidly increase the rate of macropinosome formation and fluid-phase uptake (Kerr & Teasdale, 
2009). Cells overexpressing oncogenes have been shown to exhibit elevated levels of macropinocytosis, 
as well as accelerated spontaneous motility in wound healing assays (Platek et al., 2007). This suggests a 
strong link between the membrane ruffling necessary for macropinosome formation and cell motility 
regulation, a process crucial in tumour progression and metastasis. As the molecular mechanisms of 
macropinocytosis become further defined a detailed evaluation of their regulation of immunological and 
cancerous processes is needed. 

Recently, members of the Sorting Nexin (SNX) family have been localized to the dynamic ruffling 
cell surface and found to be associated with early-stage macropinosomes (Kerr et al., 2006; Merino-Trigo 
et al., 2004; J. T. Wang et al., 2010). SNX-PX-BAR proteins form a subset of the SNX family and their 
lipid-binding (PX) and membrane-curvature sensing (BAR) domain architecture is consistent with a po-
tential role in the dramatic membrane remodeling and trafficking required in the initiation of macropi-
nosome formation. Other SNX-PX-BAR proteins have also been found to interact with regulators of ac-
tin remodeling, implicating them not only in macropinocytosis but also cell motility, metastasis, and tu-
morigenesis. This chapter will outline the outcomes of systematic functional studies into the impact of 
the SNX-PX-BAR family on macropinocytosis, and the insights this will provide into the molecular 
mechanisms of cancer biology.  

2  Endocytosis 

Endocytosis is the cellular process which facilitates the internalisation of nutrients, fluid, and signalling 
molecules from the extracellular environment (Miaczynska et al., 2004). It maintains cellular homeosta-
sis in numerous processes, including the regulation of cell-surface receptors, remodelling of the plasma 
membrane, and cell motility and migration (Di Fiore & De Camilli, 2001; Jones et al., 2006). To account 
for this vast diversity of biological roles, there are many variants of endocytosis, each distinct in the spe-
cific complement of molecular machinery utilised in organelle formation. The evolution of multiple en-
docytic pathways allows the cell to specifically regulate the kinetics of internalization for different sub-
sets of cargo and appropriately respond to varying physiological conditions (Figure 1).  



2.1   Macropinocytosis 

Macropinocytosis is a process first reported by Warren Lewis in 1931 (Swanson & Watts, 1995), which 
is also clathrin and caveolae-independent. Similar to other clathrin and caveolae-independent pathways, 
macropinocytosis is cholesterol sensitive (Grimmer et al., 2002), but its requirement of dynamin varies 
depending on cellular conditions and cell type (Altschuler et al., 1998; Bonazzi et al., 2005; Damke et al., 
1994; Herskovits et al., 1993; Y. W. Liu et al., 2008; Macia et al., 2006; Sabharanjak et al., 2002). Un-
like Clathrin-Mediated Endocytosis (CME), it is not regulated by the binding of cargo to the receptors 
which then recruit effector molecules that aide in vesicle formation (Maxfield & McGraw, 2004); instead 
the activation of Receptor Tyrosine-Kinases (RTK) in response to growth factor treatment drives the ac-
tin-mediated evaginations of the plasma membrane, non-selectively engulfing large volumes of fluid to 
form phase bright macropinosomes larger than 0.2 µm in diameter (Kerr & Teasdale, 2009; Swanson & 
Watts, 1995). Strikingly, this heterogeneous size range is significantly larger than other endocytic com-
partments such as Clathrin-Coated Vesicles (CCVs) (85-110 nm), caveolae (55-75 nm), and Clathrin-
Independent Carriers/GPI-anchored protein-enriched Early Endosomal Compartments (CLIC/GEECs) 
(40-80 nm), and the diameter of the macropinosome is the main distinguishing factor from other endo-
cytic pathways (Kirkham et al., 2005; Parton & Richards, 2003; Pearse, 1976; Rubenstein et al., 1981; 
Yamada, 1955). Interestingly treatment with millimolar concentrations of the ion exchange inhibitor ami-
loride inhibits macropinocytosis but not CME (West et al., 1989), which has been associated with the 
lowering of submembranous pH and preventing Rho GTPase signalling and actin remodelling (Koivusalo 
et al., 2010). This property can be used to define macropinocytosis (Figure 2A) along with the size of the 
organelle and responsiveness to growth factor stimulation (Kerr & Teasdale, 2009).  

Of the known endocytic routes into the cell, phagocytosis is the pathway that most closely resem-
bles macropinocytosis. The actin-mediated extension of the pseudopod required for phagosome for-
mation is structurally similar to the membrane ruffling in macropinocytosis (Swanson, 2008), and 
macropinosomes are also known as spacious phagosomes due to their morphological similarity to phago-
somes without a particle inside (Alpuche-Aranda et al., 1994). The mechanism of formation however is 
the main distinction between phagocytosis and macropinocytosis, as the former process is initiated by the 
clustering of cell surface receptors binding the ligands on the bacterium or particle to be phagocytosed 
(Swanson, 2008). Macropinocytosis however is not directly initiated by cargo or receptor molecules, but 
is a result of an increase in actin-polymerization on distinct regions of the cell surface leading to mem-
brane ruffling. Evidently, it is the mechanism of formation and the size of the resulting organelle formed 
that clearly distinguishes macropinocytosis from the other known endocytic pathways. The macropino-
cytic formation process including the unique complement of protein and lipid molecules that specifically 
defines this organelle and regulates its formation is still poorly understood. 

 
 
 
 
 
 
 
 



 
 
 

 
 
Figure 1: Variants of Endocytosis. The internalization of cargo, receptors, particles or fluid into 
mammalian cells can occur via a wide variety of pathways. Clathrin-coated vesicles are formed 
via clathrin-mediated endocytosis, whose scission from the plasma membrane is mediated by 
dynamin. Caveolae are caveolin-dependent, and also require dynamin in many cell types to be 
excised from the cell surface (Kirkham & Parton, 2005). The CLIC/GEEC pathway has been ob-
served to form ring-like or tubular structures in a clathrin and caveolae-independent manner; 
cholesterol levels though, have been shown to affect their formation (Kirkham et al., 2005). In-
ternalisation of the beta subunit of the Interleukin 2 Receptor (IL2Rβ) has been found to occur 
through a clathrin and caveolae-independent pathway distinct from CLIC/GEECs, and depend-
ent upon dynamin activity (Lamaze et al., 2001). ARF6-dependent endocytosis is also clathrin 
and caveolae-independent, and does not rely on dynamin activity (Naslavsky et al., 2004). 
Phagocytosis requires the binding of cell surface receptors to a particle prior to its internalization, 
and macropinocytosis forms macropinosomes as a result of actin-mediated plasma membrane 
ruffles.  

  



 

 
 

Figure 2: Regulation of macropinocytosis. A) HEK-Flp-In cell monolayers were treated with 1 
mM Amiloride or carrier (0.6% Methanol) for 30 minutes at 37°C prior to pulsing with the fluid-
phase marker dextran-TR for 5 minutes at 37°C in the continued absence of the drug or carrier. 
B) HEK-Flp-In cell monolayers were serum-starved for 16 hours and incubated with 100 µg/mL 
dextran-TR in the presence or absence of 100 ng/mL EGF for 5 minutes at 37°C. Dextran-TR in 
red and DAPI-positive nuclei shown in blue. White arrows point to macropinosomes > 0.2 µm in 
diameter and above the baseline threshold for fluorescence intensity. Scale bar = 10 µm.  

 



3  Physiological Implications of Macropinocytosis 

In order to drive the formation of large macropinosomes, macropinocytosis must utilise a significant por-
tion of the available membrane within the cell to internalize large volumes of fluid. This would require 
coordinated membrane trafficking events to recycle the internalized membrane back to the cell surface, 
which is by no means energetically favourable. From an evolutionary perspective, this energetically-
expensive endocytic pathway must provide a selective advantage in order to be preserved; indeed 
macropinocytosis has been implicated across a wide array of physiological processes, including immune 
antigen sampling and cellular signalling. 

The rapid and large fluid-carrying capacity of macropinosomes is central to their role in the im-
mune response, possessing great potential for antigen sampling from the environment. Antigen capture 
occurs via internalization of extracellular fluid by antigen-presenting cells, after which Major Histocom-
patibility Complex (MHC) II molecules form stable MHC-antigen complexes and present the antigenic 
peptides on the cell surface (Lanzavecchia, 1996). This process is accelerated by macropinocytosis as the 
amount of material internalized through this form of endocytosis greatly exceeds that of other endocytic 
pathways. This is evident in dendritic cells, which are professional antigen-presenting cells (Mempel et 
al., 2004; Sallusto et al., 1995). In their immature state, dendritic cells readily undergo macropinocytosis, 
and can internalize over 40% of their cell volume every hour in order to sample as much of their immedi-
ate environment as possible before presenting antigens to T cells post maturation (Larsen et al., 1990; 
Norbury, 2006; Sallusto et al., 1995). The concomitant down-regulation of macropinocytosis along with 
dendritic cell maturation signifies its relevance and specificity towards the antigen-sampling process. 
Recent studies have directly implicated a significant role for dendritic cells in cancer immunotherapy, 
where the cells’ expansive antigen-sampling capacity was applied towards the capture of tumour antigens 
that subsequently generated tumour-specific cytotoxic T lymphocytes (Diamond et al., 2011; Fuertes et 
al., 2011).  

Studies of oncogenic signalling and growth factor stimulation have also implicated macropinocy-
tosis in these processes. Cells overexpressing oncogenes have been shown to exhibit elevated levels of 
macropinocytosis (Amyere et al., 2002; Amyere et al., 2000; Kasahara et al., 2007). Accelerated sponta-
neous motility in wound healing assays have also been observed in these cells, which suggests a link be-
tween the membrane ruffling necessary for macropinosome formation and cell motility regulation, a pro-
cess crucial in tumour progression and metastasis (Platek et al., 2004; Platek et al., 2007). In conjunction 
with this, treatment with EGF (Figure 2B), PDGF and HGF/SF, all associated with uncontrolled cell pro-
liferation in cancerous tissue, have been shown to rapidly increase the rate of macropinosome formation 
and its associated fluid-phase uptake (Dowrick et al., 1993; Haigler et al., 1979; Kerr et al., 2006; Sun et 
al., 2003).  

The complement of growth factors associated with the upregulation of macropinocytosis varies 
depending on cell type. Recombinant human Macrophage Colony-Stimulating Factor (rM-CSF) and 
PhorbolMyristate Acetate (PMA) have been shown to stimulate macropinocytosis in bone marrow-
derived mouse macrophages (Racoosin & Swanson, 1989, 1992; Swanson, 1989). HGF/SF has been 
shown to increase ruffling and macropinocytosis in Madin-Darby Canine Kidney (MDCK) cells, EGF 
rapidly stimulates pinocytosis in A-431 and Human Embryonic Kidney (HEK) 293 cells, and PDGF has 
a similar effect in NIH/3T3 cells (Anton et al., 2003; Dowrick et al., 1993; Haigler et al., 1979; Kerr et 
al., 2006). Not all cell types however require the addition of growth factors or external stimuli to carry 



out macropinocytosis. Immature dendritic cells for example, display constitutively active macropinocyto-
sis to facilitate their antigen-sampling function, and oncogene-activated Rat-1 fibroblasts consistently 
maintain a high level of fluid uptake (Amyere et al., 2000; Sallusto et al., 1995). The difference between 
transiently-regulated macropinocytosis and its constitutive variants has not been definitively character-
ized, but may be a result of the differential regulation of common signalling pathways. The fact that the 
oncogenes overexpressed in constitutive macropinocytosis, such as v-Src, c-Src, K-Ras and H-Ras, are 
all downstream of growth factor binding, supports such speculation (Amyere et al., 2002; Amyere et al., 
2000; Kasahara et al., 2007; Porat-Shliom et al., 2007). 

The Src and Ras oncogenes implicated in macropinocytosis are known to induce the PI(3)K sig-
nalling cascade, translocating the p85 subunit of PI(3)K to the plasma membrane followed by its p110 
subunit (Amyere et al., 2002). This is consistent with the necessity of PI(3)K activity for macropinocyto-
sis, as treatment with the PI(3)K inhibitors wortmannin and LY294002 abrogates macropinosome for-
mation (Amyere et al., 2000; Araki et al., 1996). Activated class IA PI(3)Ks phosphorylate Phosphatidyl-
inositols (PI) at the 3’position of the inositol ring (Lindmo & Stenmark, 2006) and its substrates are con-
centrated at the plasma membrane. PI(3)K activity may therefore be responsible for the transition from 
PI(4,5)P2 to PI(3,4,5)P3 on the plasma membrane as the ruffle closes to form the macropinosome (Porat-
Shliom et al., 2007). This localized increase in the levels of PI(3,4,5)P3 on the cell surface acts as a dock-
ing site for many downstream targets (Vermeer et al., 2006), including Phosphoinositide-specific Phos-
pholipase-C (PI-PLC). PI-PLC catalyses the formation of Inositol 1,4,5-triphosphate (IP3) and diacyl-
glycerol from PI(4,5)P2 which in turn activates Protein Kinase C (PKC) and actin polymerization 
(Amyere et al., 2002). PI(3,4,5)P3 also recruits Vav, a Guanine Exchange Factor (GEF) which activates 
Cdc42 and Rac1. ADP-ribosylation factor-6 (ARF-6) has also been implicated in Rac-1 activation, as 
well as regulating Phosphatidylinositol-4-Phosphate 5 Kinase (PIP5K) activity to catalyze the production 
of PI(4,5)P2 (Boshans et al., 2000; Honda et al., 1999). Guanine Exchange Factors such as EFA6, general 
receptor for phosphoinositides-1 (GRP1), and Arf-GEP100 have been linked in their regulation of ARF-6 
activity, as the cycling between GDP or GTP-bound states is crucial for its function (Niedergang et al., 
2003; Someya et al., 2001).  

4  Molecular Regulation of Macropinocyosis 

The cellular signalling that regulates macropinocytosis must activate downstream pathways that comprise 
of a unique complement of protein and lipids specific to macropinosome formation. Although there is a 
relative paucity of information regarding the components unique to macropinocytosis, the molecules 
known to be involved in this endocytic pathway can be broadly categorized into actin modulators that 
regulate membrane ruffling, membrane trafficking regulators including members of the RabGTPase 
family, phosphoinositides that affect the membrane composition of the macropinosome, and the phospho-
inositide-binding Phox-homology (PX) domain and Sorting Nexin proteins. 

4.1   Actin modulators and membrane ruffling 

Membrane ruffling is the initial step of macropinocytosis (Amyere et al., 2002), whereby dynamic cell 
surface ultrastructures lengthen into membrane extensions that reattach to the cell membrane while cap-
turing extracellular fluid (Francis et al., 1993; West et al., 2000). This enveloping action of the mem-



brane ruffle then forms the macropinosome. The mechanism by which amiloride inhibits macropinosome 
formation is proposed to be the inhibition of cell ruffling (Swanson & Watts, 1995) as cytoplasm acidifi-
cation within macrophages has been shown to abrogate cell ruffling while alkalinization induced hyper-
ruffling (Heuser, 1989). Inhibitors of actin-polymerization, which is crucial to membrane ruffling, have 
also been shown to abrogate macropinocytosis (Hacker et al., 1997; Mettlen et al., 2006).  

Actin polymerization involves the addition of monomeric actin (G-actin) into polar filaments (F-
actin) through either the fast growing (barbed) or slower growing (pointed) ends (Millard et al., 2004). 
The Arp2/3 complex consists of 2 actin-related proteins (Arp) Arp2 and Arp3 in complex with the 
Arp2/3 Complex Components (ARPC) ARPC1, 2, 3, 4, and 5 in 1:1 stochiometry with each other 
(Machesky et al., 1994; Millard et al., 2004). The Arp2/3 complex is able to drive actin polymerization, 
where actin monomers bind to and hydrolyze ATP in order to be added onto the fast growing barbed end 
of F-actin. Arp2/3 is also able to initiate de novo actin nucleation, by binding to the pointed ends of F-
actin and producing barbed-end filament seeds from which new actin branches may extend (Goley & 
Welch, 2006; Millard et al., 2004). Given that actin polymerization is required for the membrane ruffling 
necessary for macropinocytosis, it is unsurprising that the Arp2/3 complex has been implicated in 
macropinosome formation (Insall et al., 2001). The de novo formation of actin branches would push out 
into the plasma membrane and create membrane ruffles, which upon folding back onto the cell surface 
form macropinosomes.  

The activation of the Rho GuanosineTriphosphatases (GTPases) Cdc42, and Rac1 from their GDP 
to GTP-bound forms, is important in mediating the actin polymerization necessary for membrane ruffling 
(West et al., 2000). GTP-bound Cdc42 and PI(4,5)P2 synergistically activate Neuronal Wiskott-Aldrich 
Syndrome protein (N-WASP), by binding to its CRIB domain and basic region respectively (Higgs & 
Pollard, 2000; Rohatgi et al., 2000). The autoinhibitory conformation of N-WASP is then relieved, ex-
posing the VCA domain that has been shown to be necessary and sufficient to activate the Arp2/3 com-
plex (Machesky et al., 1999; Rohatgi et al., 1999). The adaptor proteins Nck and Growth factor Recep-
tor-Bound protein 2 (Grb2) have been shown to activate N-WASP as well, binding to the proline-rich 
domain of N-WASP through their respective Src Homology 3 (SH3) domains (Carlier et al., 2000; 
Rohatgi et al., 2001). The additional presence of a Src Homology 2 (SH2) domain on both Nck and Grb2 
allows them to associate directly with activated RTKs, providing a link between these upstream signals 
and N-WASP activation (Buday, 1999). WASP-Interacting SH3 protein (WISH) has also been shown to 
bind to and activate N-WASP, enhancing N-WASP induced Arp2/3 complex activation independent of 
Cdc42 (Fukuoka et al., 2001). The G-actin-binding Profilin is another protein implicated in enhancing 
Arp2/3 complex activation through its interactions with N-WASP and WASP-family Verpolin-
homologous protein (WAVE) (Miki et al., 1998; Suetsugu et al., 1998;Yang et al., 2000). Evidently N-
WASP activation is very specifically coordinated, and there is evidence to suggest it is negatively regu-
lated by WASP-Interacting Protein (WIP). WIP retards N-WASP/Cdc42-induced actin polymerization 
through the Arp2/3 complex, and is involved in stabilizing actin filaments (Martinez-Quiles et al., 2001).  

Rac1 has also been shown to be a regulator of macropinocytosis. It is necessary for growth-factor-
induced membrane ruffling, and its microinjection rapidly stimulates actin accumulation at the cell sur-
face (Ridley et al., 1992); microinjection of dominant-negative Rac1 also inhibits macropinocytosis in 
immature dendritic cells (West et al., 2000). Moreover transient Rac1 activation has been temporally 
associated with membrane ruffle closure, and its deactivation precedes the formation of the macropi-
nosome cup (Yoshida et al., 2009). Rac1 activation has also been linked to WAVE2, as WAVE2 defi-



cient embryonic fibroblasts suffer from severe defects in cell growth, motility, and Rac1-mediated actin 
polymerization (Yan et al., 2003). Rac1 does not directly associate with WAVE2 however, instead inter-
acting with multi-protein WAVE2 complexes that include Abi1, Nck-associated protein 1 (Nap1), Spe-
cifically Rac1-Associated protein 1 (Sra1), Insulin Receptor Substrate protein 53 (IRSp53) and HSPC300 
(Abou-Kheir et al., 2008; Gautreau et al., 2004). Proteins within this WAVE2 complex all translocate to 
the tips of membrane protrusions following the injection of constitutively-active Rac1; moreover Sra1 
and Nap1 have been reported as the components of the WAVE2 complex that interact directly with Rac1, 
as their siRNA-mediated depletion inhibits the formation of Rac1-dependent lamellipodia in response to 
growth factor treatment (Steffen et al., 2004). Recently IRSp53 has been implicated in stabilizing the 
interaction of Rac1 with Abi1 and WAVE2; IRSp53 forms a complex with Abi1 and WAVE2 in a Rac1 
activation-dependent manner, and depletion of IRSp53 reduces Rac1 association with the other proteins 
in the complex (Abou-Kheir et al., 2008). Abi1 has been shown to bind to the WHD domain of WAVE2, 
thus facilitating the activation of the Arp2/3 complex through WAVE2 (Innocenti et al., 2004). Con-
sistent with the role of Abi1 in actin polymerization, Abi1 has also been observed to regulate WAVE2 in 
Rac1-dependent macropinocytosis (Innocenti et al., 2005). Evidently each member of the WAVE2 pro-
tein complex plays a role in mediating the Rac1-dependent mechanisms that ultimately lead to membrane 
ruffling and macropinocytosis. 

Despite the fact that membrane ruffling is required for macropinocytosis, ruffling itself is not suf-
ficient for macropinosome formation. The microinjection of dominant-negative Rac1 and inhibition of 
Rac1, Rho and Cdc42 activity through the Clostridium difficile B toxin abrogated macropinocytosis 
without significantly affecting membrane ruffling (West et al., 2000). These observations indicate that 
downstream effectors of Rho GTPases are required in regulating macropinosome formation following 
membrane ruffling, and PAK1 is one such candidate. Both Cdc42 and Rac1 can activate PAK1 by bind-
ing to its p21-Binding Domain (PBD) (Hoppe & Swanson, 2004), and PAK1 has been shown to be nec-
essary for PDGF-induced macropinocytosis in fibroblast cells (Dharmawardhane et al., 2000). Signifi-
cantly, PAK1 phosphorylates Carboxyl-terminal Binding pProtein 3/Brefeldin-A-ADP-Ribosylated Sub-
strate (CtBP3/BARS) at serine 147, and this phosphorylation is essential for EGFR-stimulated 
macropinocytosis but not membrane ruffling. Moreover, CtBP3/BARS is translocated to the macropino-
cytic cup in response to EGF treatment, and overexpression of its dominant negative mutant inhibited the 
fission of these cups from the plasma membrane. This suggests that downstream of Rac1 and Cdc42, 
PAK1-phosphorylation of CtBP3/BARS is involved in the formation and fission of the macropinosome 
from the plasma membrane (Liberali et al., 2008).  

4.2   Phosphoinositides 

Given that the initiation of macropinocytosis is PI(3)K-dependent, it logically follows that the phospho-
inositides generated by PI(3)K activity are involved in this process. Phosphoinositides result from the 
phosphorylation of phosphatidylinositol at different positions along the inositol ring (Lindmo & 
Stenmark, 2006), and different phosphoinositide species crucial for the formation and maturation of 
macropinosomes. In A431 cells, PI(4,5)P2 levels on membrane ruffles are more than double the amount 
present on planar membranes, rapidly dropping just prior to macropinosome closure. Conversely, 
PI(3,4,5)P3 levels increases locally at the site of macropinosome formation and peaks when the macropi-
nosome closes (Araki et al., 2007). A similar elevation in PI(3,4,5)P3 levels on the membrane ruffles was 



also observed in HeLa cells (Porat-Shliom et al., 2007) and in macrophages the subsequent drop in 
PI(3,4,5)P3 levels coincided with the accumulation of PI(3)P (Yoshida et al., 2009).  

The phosphoinositide-metabolising enzymes that regulate these phosphoinositide transitions are all 
potential candidates in this. PI is converted to PI(3)P or PI(4)P through the actions of vacuolar protein 
sorting (Vps) 34-p150 and PI(4)KIIα respectively (Krauss & Haucke, 2007). PI(4,5)P2 synthesis from 
PI(4)P at the plasma membrane is predominantly regulated by PIP5K (Ishihara et al., 1996; Ishihara et al., 
1998), or it can be formed from dephosphorylating PI(3,4,5)P3 through the 3-phosphatase activity of 
Phosphatase and Tensin homolog (PTEN) (Wishart & Dixon, 2002); PI(3,4,5)P3 is synthesized from 
PI(4,5)P2 by the action of class I PI(3)K (Krauss & Haucke, 2007). The conversion of PI(3,4,5)P3 to 
PI(3)P on the macropinosome body may be the result of the sequential dephosphorylation of PI(3,4,5)P3 
as catalysed by 4 and 5-phosphatases. Src Homology 2 domain-containing Inositol 5-Phosphatase (SHIP) 
1 and 2 are potential 5-phosphatase candidates, dephosphorylating PI(3,4,5)P3 to PI(3,4)P2 at the cell sur-
face. Type I and II 4-phosphatases are then able to catalyse the conversion between PI(3,4)P2 and PI(3)P 
(Krauss & Haucke, 2007). Alternatively PI(3,4,5)P3 may simply be lost from the macropinosome mem-
brane and VPS34-p150 drives the de novo synthesis of PI(3)P from PI (Zerial & McBride, 2001). The 
levels of PI(3,4,5)P3 within the cell has been shown to be crucial for macropinosome formation, as PTEN 
or a lipid phosphatase deficient mutant PTEN(G129E) overexpression significantly decreased or in-
creased macropinocytosis respectively (Wang et al., 2010).  

The synthesis of PI(3,5)P2 from PI(3)P is catalysed by PIKfyve (Sbrissa et al., 1999; Shisheva et 
al., 1999), and has recently been implicated in the intracellular maturation of the macropinosome (Kerr et 
al., 2010). Disruption of PIKfyve activity through either overexpression of the catalytically inactive 
PIKfyve mutant or using a specific inhibitor of PIKfyve catalytic activity YM201636 (Jefferies et al., 
2008), both inhibited macropinosome fusion with the late endosomes/lysosomes (Kerr et al., 2010). Giv-
en that PI(3)P can be found on early-stage macropinosomes, this data indicates that PIKfyve regulates its 
conversion to PI(3,5)P2 on macropinosomes in order to facilitate the fusion of the organelle with the late 
endosome/lysosomes. 

4.3   RabGTPases 

Following the transition from PI(4,5)P2 to PI(3,4,5)P3 on macropinosome membranes, Rab5 recruitment 
has been observed prior to PI(3,4,5)P3 loss (Porat-Shliom et al., 2007). Rab5 belongs to the Rab family of 
GTPases that play crucial roles in membrane trafficking, and has been known to regulate endosome fu-
sion, motility of endosomes along microtubules, and early endosomal identity (Zerial & McBride, 2001). 

The Rab5 signal cascade leading to membrane docking and fusion is well understood. The Rabap-
tin-5/Rabex-5 complex is recruited onto early endosomes through Rabaptin-5 activity, and activates 
Rab5-GTP through the nucleotide exchange function of Rabex-5. Rab5-GTP then interacts with Vps34-
p150, a PI(3)K which produces PI(3)P (Zerial & McBride, 2001). At this stage of maturation, macropi-
nosomes become rich in PI(3)P, and consequently proteins containing FYVE or Phox homology (PX) 
domains, are able to bind (Stenmark et al., 1996; Xu et al., 2001). These include EEA1, and the Rab5 
effector Rabankyrin-5, both of which possess FYVE domains (Hamasaki et al., 2004; Schnatwinkel et al., 
2004). EEA1 is known to form oligomeric complexes with a t-SNARE required for endosome fusion, 
Syntaxin 13, in the presence of NSF (McBride et al., 1999). Both EEA1 and Rabankyrin-5 interact di-
rectly with Rab5 in a GTP-dependent fashion as well as binding to PI(3)P, and overexpression and siR-
NA-mediated depletion of Rabankyrin-5 increases and decreases the number of macropinosomes formed 



respectively (Schnatwinkel et al., 2004). Although PI(3)P is not involved in macropinosome formation, 
inhibition of PI(3)P synthesis through 3-methyladenine treatment inhibited homotypicmacropinosome-
macropinosome fusion (Araki et al., 2006). This process is likely to be mediated by the Rab5 pathway, as 
the constitutively active Rab5 mutant Rab5(Q79L) results in homotypic fusion leading to swollen endo-
somes whose size resemble early macropinosomes (Stenmark et al., 1994).  

It was discovered that endosomes undergo a Rab5 to Rab7 conversion from early to late endo-
somes (Rink et al., 2005), and this transition has also been observed on macropinosomes (Kerr et al., 
2006). Rab7 is a late endosome marker that has been linked to macropinocytosis and is primarily respon-
sible for early to late endosome cargo trafficking as well as homotypic fusion between late endosomes 
(Pfeffer, 2003). The conversion from Rab5 to Rab7 on macropinosomes suggests that at least in some 
model systems, macropinosomes exhibit a maturation process from early to late endosomal structures, 
reminiscent of classical endosomes. Rab7 works in a similar GTPase-dependent manner as Rab5, and 
localizes to macropinosomes later in the maturation process - Rab7-positive macropinosomes often co-
label with Lysosomal Glycoprotein A (LGP-A) which initiates their merge into the tubular late endoso-
mal/lysosomal compartment. This late stage in maturation can also be marked by an accumulation of Ly-
sosomal-Associated Membrane Protein 1 (LAMP1) on the macropinosome, an indication that the orga-
nelle is starting to fuse with the late endosome/lysosome system (Egami & Araki, 2009). It is there where 
macropinosome contents are presumably degraded and its membrane content is recycled (Racoosin & 
Swanson, 1993).  

Rab7-Interacting Lysosomal Protein (RILP) is a crucial part of Rab7-mediated lysosomal degrada-
tion of endosomal contents (Colucci et al., 2005). RILP binds to Rab7-GTP and recruits dynein-dynactin 
motor complexes, transporting Rab7-positive compartments towards the lysosomes (Jordens et al., 2001). 
RILP is also known to interact with another member of the Rab family, Rab34 (Wang & Hong, 2005), 
which has been shown to be localized at membrane ruffles and its overexpression increases macropinocy-
tosis (Sun et al., 2003). However a more recent study disputed the reported role of Rab34 in fluid-phase 
uptake, as its overexpression in HeLa cells did not result in a difference in the rate of fluid-phase uptake. 
Furthermore, its localization was found to be at the Golgi instead of on membrane ruffles and Rab34 de-
pletion resulted in defective secretion from the Golgi to the plasma membrane (Goldenberg et al., 2007). 
The role of Rab34 in macropinocytosis is therefore controversial. 

Recently Rab21 was found to associate with early-stage macropinosomes in RAW264 macrophag-
es. Rab21 localizes to the macropinosome in a GTPase-dependent manner, and its temporal recruitment 
follows the loss of PI(4,5)P2 and PI(3,4,5)P3 from the macropinosome membrane. Moreover Rab21 en-
richment on the macropinosome follows Rab5 but precedes Rab7 recruitment, dissociating from the or-
ganelle prior to the recruitment of the late endosome/lysosome marker LAMP-1. The spatiotemporal dis-
tribution of Rab21 during macropinocytosis implicates its involvement in early stage macropinocytosis, 
but unlike Rab5, Rab21 overexpression does not elevate macropinosome formation (Egami & Araki, 
2009; Schnatwinkel et al., 2004).  

4.4   PX domain proteins and Sorting Nexins 

The lack of knowledge regarding molecules that specifically regulate macropinosome formation has hin-
dered investigation into this endocytic pathway, highlighting the need to examine novel sets of candidate 
proteins for their role in macropinocytosis. The PX domain family is an ideal set for this purpose, span-
ning across forty-nine proteins in the mammalian genome, many of which have been reported to bind to a 



wide variety of phosphoinositides in a diverse array of membrane and protein trafficking events 
(Teasdale & Collins, 2012). Twelve of the PX-domain proteins also contain a C-terminal 
Bin/Amphiphysin/Rvs (BAR) domain, which is involved in homo and heterodimerization, detecting 
membrane curvature and tabulation (Habermann, 2004; Itoh & De Camilli, 2006; Peter et al., 2004; 
Zimmerberg & McLaughlin, 2004). It has also been demonstrated that the PX and BAR domains cooper-
ate in the coincidence detection of curved membranes rich in specific phosphoinositides (Carlton et al., 
2004; J. G. Carlton & Cullen, 2005), and together are involved in the endosomal localization of SNXs 
(Liu et al., 2006). SNX1, SNX2, SNX4, SNX5, SNX6, SNX7, SNX8, SNX9, SNX18, SNX30, SNX32 
and SNX33 all contain PX and BAR domains, and together they form the SNX-PX-BAR family.  

SNX5 was the first member of the SNX-PX-BAR family identified to be involved in macropino-
cytosis. EGF treatment is known to upregulate macropinocytosis (Haigler et al., 1979), and SNX5 is 
transiently recruited to the plasma membrane in response to EGF (Merino-Trigo et al., 2004). This is 
likely due to the elevation in PI(3,4)P2 on the plasma membrane following EGF treatment, to reflect the 
PI(3,4)P2-specificity of the PX domain of SNX5 as determined by liposome binding assays (Merino-
Trigo et al., 2004). Following its cell-surface translocation, SNX5 can be localized to discrete subdo-
mains of the macropinosome along with Rab5, SNX1 and EEA1 (Kerr et al., 2006). SNX5 is recruited 
early in the macropinocytic process, with a temporal association with macropinosomes that overlaps with 
that of Rab5 but precedes Rab7 recruitment. Once on the macropinosome, SNX5 forms extensive micro-
tubule-dependent tubules that depart from the macropinosome body. This extensive tubulation removes a 
significant portion of the limiting membrane of the macropinosome, changing the organelle’s shape and 
volume. This mechanism is speculated to be responsible for recycling and trafficking components of the 
macropinosome (Kerr et al., 2006). Within primary bone-marrow derived mouse macrophages, depletion 
of SNX5 significantly decreased the size and number of macropinosomes formed (Lim et al., 2012).  

The lipid-binding and membrane tubulating capacity of SNX5 has been implicated in the early 
stages of macropinocytosis (Kerr et al., 2006), and this could be correlated to its PX-BAR domain archi-
tecture. It logically follows then that other members of the SNX-PX-BAR family could also be involved 
in macropinocytosis. When comparing the sequence similarity of SNX5 to the other 11 human members 
of the SNX-PX-BAR family using a bioinformatics approach, the SNX-PX-BAR family can be split into 
three subgroups or classes as previously described (Seet & Hong, 2006). Class 1 includes SNX5 and the 
4 most closely related proteins by amino acid sequence similarity - SNX1, SNX2, SNX5, SNX6, and 
SNX32. The level of sequence homology between the proteins separates class 1 from class 2, which 
comprises of SNX4, SNX7, SNX8, and SNX30. Class 3 can also be referred to as the SH3-PX-BAR 
subgroup, as all three members of this class (SNX9, SNX18, and SNX33) share an N-terminal SH3 do-
main. Given that the regulation of macropinocytosis varies in response to different cellular conditions 
across different cell types, it is important to validate candidates using functional screens in consistent cell 
models. A systematic gain-of-function screen was carried out for each member of the SNX-PX-BAR 
family, where the number of macropinosomes formed by cells overexpressing the candidate proteins 
were imaged and computationally analysed (Wang et al., 2010). Upon transient overexpression in HEK-
Flp-In cells, SNX1, SNX5, SNX9, SNX18, and SNX33 were all able to independently elevate the fre-
quency at which macropinocytosis occurred (Figure 3). 

SNX1 has been observed to interact and form heterodimers with SNX5 by several groups (Kerr 
etal., 2006; H. Liu et al., 2006) despite limited evidence to the contrary (Wassmer et al., 2007). Like 
SNX5, SNX1 overexpression also changes the frequency of macropinosome formation, suggesting that 



the two proteins are acting in complex as part of a common mechanism in macropinocytosis. This hy-
pothesis is further substantiated by the colocalization of SNX1 and 5 on newly formed macropinosomes, 
indicating their recruitment early in the formation process.  

Apart from SNX1 and SNX5, the remaining hits from the gain-of-function screen constitute the 
SH3 subgroup of the SNX-PX-BAR family - SNX9, SNX18 and SNX33. SNX9 possesses arguably the 
strongest link to macropinocytosis, as it has been mechanistically linked to macropinosome formation by 
virtue of its role in actin assembly. SNX9 has been reported to interact with N-WASP through its N-
terminal SH3 domain (Shin et al., 2007; Yarar et al., 2007). This interaction is thought to drive N-WASP 
activation along with the binding of PI(4,5)P2, as SNX9 also binds to the PI(4)P-5 kinases Iα, Iβ and Iγ to 
regulate PI(4,5)P2 synthesis (Shin et al., 2008; Yarar et al., 2007). As well as regulating N-WASP-
mediated Arp2/3 complex activation, SNX9 has been shown to directly interact with the Arp2/3 complex 
to drive actin nucleation and membrane ruffling (Shin et al., 2008; Yarar et al., 2007). SNX9 can be 
found on F-actin rich membrane ruffles and tubules (Yarar et al., 2007), and its PX-BAR unit drives ex-
tensive membrane tubulation within both in vitro liposomes and in vivo (Shin et al., 2008). The scission 
of these tubules occurs through the interaction between the SH3 domain of SNX9 and dynamin 2, as 
overexpressing the PX-BAR unit of SNX9 alone results in extensive tubules unable to undergo mem-
brane scission for vesicle formation (Haberg et al., 2008).  

Similar to SNX9, the PX-BAR unit of SNX18 induces extensive membrane tubulation; however in 
HeLa cells, SNX18 does not colocalise with SNX9, instead being found on endocytic vesicles positive 
for adaptor protein complex 1 (AP1) but devoid of clathrin (Haberg et al., 2008). This suggests a possible 
functional divergence between SNX9 and SNX18, although this divergence appears to vary depending on 
cell type. Within NIH3T3 cells, SNX18 interacts with N-WASP (Park et al., 2010), and also associates 
with actin and Rac1 in linear filamentous structures near the surface of HEK-Flp-In cells (Figure 4). The 
association between SNX18, N-WASP, PI(4,5)P2, and actin machinery in HEK Flp-In cells mirrors that 
of SNX9 and points to a potential mechanism for their roles in macropinocytosis (Haberg et al., 2008). 
Recently SNX18 has also been observed to impact developing spinal motor neurons, as its expression 
level in the embryonic spinal cord is downregulated as the motor neurons mature (Nakazawa et al., 2011). 
SNX33 has been shown to interact with both SNX9 and WASP (Zhang et al., 2009), and its involvement 
in phagosome maturation is conserved across mammalian and C.elegans cell systems (Almendinger et al., 
2011). 

The interaction between SNX9, SNX18, and SNX33 with N-WASP indicates that actin modula-
tion is the mechanism by which these proteins are able to upregulate macropinosome formation. These 
direct interactions with actin regulating molecules have not been observed for the remainder of the SNX-
PX-BAR family, and appears to be contingent on the presence of a SH3 domain. The roles played by 
SNX1 and SNX5 in promoting macropinocytosis are likely a result of accelerated membrane trafficking 
and turnover at the cell surface, although this has not been definitively demonstrated. 

 
 
 
 
 
 
 



 
 
 
 

 
Figure 3: The SNX-PX-BAR family is involved in macropinosome formation. HEK-Flp-In cells 
transiently overexpressing GFP tagged members of the SNX-PX-BAR family (organized ac-
cording to sequence similarity (Seet & Hong, 2006)) were assayed for macropinosome for-
mation. The mean number of macropinosomes/100 transfected cells was quantitated over 8 rep-
licates of 500 transfected cells for each condition. * denotes statistical significance (p<0.05) us-
ing the Student’s T-test, performing pairwise analyses relative to cells transfected with GFP 
alone. Error bars denote S.E.M. Adapted from (Wang et al., 2010). 



 
 

Figure 4: SNX18 associates with N-WASP, Rac1, and actin-positive filaments. A) HEK-Flp-In 
cells transfected with both pEGFP-N-WASP and pmCherry-SNX18 were fixed in 4% PFA and 
permeabilized with 0.1% TritonX100. The monolayers were then labelled with Alexa-647-
conjugated Phalloidin to stain for filamentous actin-positive structures and mounted onto co-
verslips. B) HEK-Flp-In cells were transfected together with pEGFP-SNX18 and either myc-
RacV12 (constitutively active) or myc-RacN17 (dominant-negative). After fixation with 4% 
PFA, the cells were permeabilized using 0.1% TritonX100 and labelled with a myc epitope anti-
body, followed by an Alexa-546-conjugated goat-anti-mouse IgG secondary antibody. Images 
were captured on the LSM 510 Meta confocal microscope. Scale bar = 5 µm 



5   Macropinocytosis– gateway to cancer therapeutics? 

Activation of the oncogenes Ras and Src both lead to elevated macropinocytosis (Porat-Shliom et al., 
2007; Veithen et al., 1996), which in turn enhances receptor tyrosine kinase signalling (Schmees et al., 
2012) and induces metastatic migration (Platek et al., 2004). The sustained activity of Rho GTPasespro-
mote the formation of membrane ruffles (Hoppe & Swanson, 2004) while targeting PAK1 – a key regula-
tor of macropinocytosis (Dharmawardhane et al., 2000) that is highly expressed in ovarian, breast, and 
bladder cancers (Balasenthil et al., 2004; Ito et al., 2007; Schraml et al., 2003). PI(3)K activity and phos-
phoinositide regulation are crucial to macropinocytosis, and when PTEN attenuation of PI(3)K signalling 
is compromised,tumorigenesisis initiated (Li et al., 1997; J. T. Wang et al., 2010). Clearly there is a sig-
nificant overlap between the mechanisms regulating macropinocytosis and cancer and the insights into 
the former may help shape our understanding of the latter. The relative paucity in knowledge of the mol-
ecules involved in macropinocytosis signifies great potential for the discovery of novel cancer therapeu-
tics and diagnostic markers through the targeting of previously unidentified genes and genetic pathways.  

An example of the interconnectedness between the molecular regulation of macropinocytosis, can-
cer, and future therapeutics, is evidenced by studies revolving around the SNX protein family. Of the 
SNX proteins involved in the regulation of macropinocytosis, there is a growing body of evidence high-
lighting potential roles in cancer. SNX1 has been observed to be downregulated in a number of cancers, 
including ovarian cancer (Ju et al., 2009), gefitinib-sensitive non-small cell lung cancer (Nishimura et al., 
2008), and colon cancer (Huang et al., 2011; Nguyen et al., 2006), serving as part of a potential set of 
molecular diagnostic markers for these classes of aberrant cellular growth. SNX5 has more recently been 
reported as a marker of papillary thyroid carcinoma (Ara et al., 2012), showing the direct applicability of 
molecular insight into the SNX family towards cancer diagnostics. The SH3-PX-BAR subfamily com-
prising of SNX9, SNX18, and SNX33 all interact with actin modulators (Park et al., 2010; Shin et al., 
2007; Zhang et al., 2009) and have been shown to be fundamental to the regulation of mitotic progres-
sion and cell division (Ma & Chircop, 2012). These cellular events are precisely coordinated by SNX 
proteins and a plethora of other molecules, which if disrupted can lead directly to metastasis and tumor-
igenesis. Further research into the SNX protein family, many members of which remain largely unstudied, 
can help expand our understanding of the molecular networks involved in macropinocytosis, which pos-
sesses great potential for breakthroughs in clinical diagnostics and cancer therapeutics. 
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