171 research outputs found
A Novel Closed-Circular Mitochondrial DNA with Properties of a Replicating Intermediate
Alternative splicing of the mouse embryonic poly(A) binding protein (Epab) mRNA is regulated by an exonic splicing enhancer: a model for post-transcriptional control of gene expression in the oocyte
Embryonic poly(A) binding protein (EPAB), expressed in oocytes and early embryos, binds and stabilizes maternal mRNAs, and mediates initiation of their translation. We identified an alternatively spliced form of Epab lacking exon 10 (c.Ex10del) and investigated the regulation of Epab mRNA alternative splicing as a model for alternative splicing in oocytes and early preimplantation embryos. Specifically, we evaluated the following mechanisms: imprinting; RNA editing and exonic splicing enhancers (ESEs). Sequence analysis led to the identification of two single nucleotide polymorphisms (SNPs): one was detected in exon 9 (rs55858A/G), and served as a marker for the parental origin of the alternatively spliced form, and the other was found in exon 10 (rs56574G/C), and co-segregated with the exon 9 SNP. We found that the presence of rs56574G in exon 10 led to the formation of an ESE, leading to efficient exclusion of exon 10. Real-time RT–PCR results revealed a 5-fold increase in the expression of the c.Ex10del alternative splicing variant in animals carrying rs56574G/G in exon 10 compared with rs56574C/C at the same locus. Our findings suggest that SNPs may alter the ratio between alternative splicing variants of oocyte-specific proteins. The role that these subtle differences play in determining individual reproductive outcome remains to be determined
Binding of Ribosomal Proteins to RNA Covalently Coupled to Agarose
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65486/1/j.1432-1033.1977.tb11554.x.pd
Floristic and vegetation structure of a grassland plant community on shallow basalt in southern Brazil
Few studies have adequately described the floristic and structural features of natural grasslands associated with shallow basalt soils in southern Brazil. This study was carried out on natural grazing land used for livestock production in the municipality of Santana do Livramento, in the Campanha region of the state of Rio Grande do Sul, Brazil. The aim of the study was to describe the floristic and structural diversity of the area. The floristic list obtained comprises 229 plant taxa from 40 botanical families, with a predominance of the families Poaceae (62), Asteraceae (28), Fabaceae (16) and Cyperaceae (12). The estimated diversity and evenness in the community were 3.00 and 0.874, respectively. Bare soil and rock outcrops accounted for 19.3% of the area, resulting in limited forage availability. Multivariate analysis revealed two well-defined groups among the sampling units. One group showed a high degree of internal aggregation, associated with deep soils, and was characterized by the presence of tussocks, whereas the other was less aggregate and was characterized by prostrate species growing on shallow soil. Ordination analysis indicated a gradient of moisture and of soil depth in the study area, resulting in different vegetation patterns. These patterns were analogous to the vegetation physiognomies described for Uruguayan grasslands. Overall, the grassland community studied is similar to others found throughout southern Brazil, although it harbors more winter forage species. In addition, the rare grass Paspalum indecorum Mez is locally dominant in some patches, behaving similarly to P. notatum Fl., a widespread grass that dominates extensive grassland areas in southern Brazil
Lessons from non-canonical splicing
Recent improvements in experimental and computational techniques that are used to study the transcriptome have enabled an unprecedented view of RNA processing, revealing many previously unknown non-canonical splicing events. This includes cryptic events located far from the currently annotated exons and unconventional splicing mechanisms that have important roles in regulating gene expression. These non-canonical splicing events are a major source of newly emerging transcripts during evolution, especially when they involve sequences derived from transposable elements. They are therefore under precise regulation and quality control, which minimizes their potential to disrupt gene expression. We explain how non-canonical splicing can lead to aberrant transcripts that cause many diseases, and also how it can be exploited for new therapeutic strategies
A Multifaceted Perspective of Pharmaceutical Innovation: A Consideration of the Regulatory Role
Replication of Mitochondrial DNA in Mouse L Cells and Their Thymidine Kinase- Derivatives: Displacement Replication on a Covalently-Closed Circular Template
- …
