3,416 research outputs found

    Association of smoking and nicotine dependence with pre-diabetes in young and healthy adults.

    Get PDF
    INTRODUCTION: Several studies have shown an increased risk of type 2 diabetes among smokers. Therefore, the aim of this analysis was to assess the relationship between smoking, cumulative smoking exposure and nicotine dependence with pre-diabetes. METHODS: We performed a cross-sectional analysis of healthy adults aged 25-41 in the Principality of Liechtenstein. Individuals with known diabetes, Body Mass Index (BMI) >35 kg/m² and prevalent cardiovascular disease were excluded. Smoking behaviour was assessed by self-report. Pre-diabetes was defined as glycosylated haemoglobin between 5.7% and 6.4%. Multivariable logistic regression models were done. RESULTS: Of the 2142 participants (median age 37 years), 499 (23.3%) had pre-diabetes. There were 1,168 (55%) never smokers, 503 (23%) past smokers and 471 (22%) current smokers, with a prevalence of pre-diabetes of 21.2%, 20.9% and 31.2%, respectively (p <0.0001). In multivariable regression models, current smokers had an odds ratio (OR) of pre-diabetes of 1.82 (95% confidential interval (CI) 1.39; 2.38, p <0.0001). Individuals with a smoking exposure of <5, 5-10 and >10 pack-years had an OR (95% CI) for pre-diabetes of 1.34 (0.90; 2.00), 1.80 (1.07; 3.01) and 2.51 (1.80; 3.59) (p linear trend <0.0001) compared with never smokers. A Fagerström score of 2, 3-5 and >5 among current smokers was associated with an OR (95% CI) for pre-diabetes of 1.27 (0.89; 1.82), 2.15 (1.48; 3.13) and 3.35 (1.73; 6.48) (p linear trend <0.0001). DISCUSSION: Smoking is strongly associated with pre-diabetes in young adults with a low burden of smoking exposure. Nicotine dependence could be a potential mechanism of this relationship

    Effects of Electromagnetic and Hydraulic Forming Processes on the Microstructure of the Material

    Get PDF
    Over the past few years, various papers have been published in the field of high speed forming processes. The focus was mainly on the technological aspects of metal forming, however. Therefore, the present contribution puts an emphasis on transmission electron microscopy analyses. The present research work describes the effects of the two forming processes upon the aluminum microstructure and their influence on the material properties. The objective is to characterise the micro processes determining the plastic deformation with both forming velocities the electromagnetic high speed forming process with strain rates of 10,000 s^(-1) and the bulge test, having deformation rates of less than 0.1 s^(-1) as a quasistatic process. In this article sheet metals out of technical pure aluminum 99.5% with a thickness of 1 mm were investigated. To this end, sample specimens were taken from manufactured workpieces along the radius at various distances from the center. Because of the similarity of the forming paths, two places on the specimens manufactured at different forming rates were evaluated and compared to each other: immediately next to the blankholder and from the area of maximum strain. Metallographic tests of the structures, the sheet thickness, and the micro hardness distribution of the initial state and the formed sheet metals were executed in advance

    On the Significance of the Die Design for Electromagnetic Sheet Metal Forming

    Get PDF
    Electromagnetic Forming is a high speed forming process using a pulsed magnetic field to form metals with high electrical conductivity, such as copper or aluminium alloys. During the process, typical pressure peaks up to 200 MPa and velocities in the range of 300 m/s can be achieved. As significant process parameters the pressure maximum as well as the local and temporal varying pressure distribution have been identified. As of a certain drawing depth and distance between workpiece and tool coil, the pressure does not act any longer on the workpiece, but the deformation process is still driven by the inertia forces. It has been found out that the velocity distribution within the sheet metal during the forming stages as well as at the time of impact with a die significantly influences the forming result. Additionally, a special undesired effect is the rebound behaviour of flat workpiece areas being in contact with the die. To investigate the influence capability of the die concerning this effect, the parameters stiffness and damping properties have been varied by means of simulation using a mechanical substitute model

    X-48B Flight Test Progress Overview

    Get PDF
    The results of a series of 39 flight tests of the X-48B Low Speed Vehicle (LSV) performed at the NASA Dryden Flight Research Center from July 2007 through December 2008 are reported here. The goal of these tests is to evaluate the aerodynamic and controls and dynamics performance of the subscale LSV aircraft, eventually leading to the development of a control system for a full-scale vehicle. The X-48B LSV is an 8.5%-scale aircraft of a potential, full-scale Blended Wing Body (BWB) type aircraft and is flown remotely from a ground control station using a computerized flight control system located onboard the aircraft. The flight tests were the first two phases of a planned three-phase research program aimed at ascertaining the flying characteristics of this type of aircraft. The two test phases reported here are: 1) envelope expansion, during which the basic flying characteristics of the airplane were examined, and 2) parameter identification, stalls, and engine-out testing, during which further information on the aircraft performance was obtained and the airplane was tested to the limits of controlled flight. The third phase, departure limiter assaults, has yet to be performed. Flight tests in two different wing leading edge configurations (slats extended and slats retracted) as well as three weight and three center of gravity positions were conducted during each phase. Data gathered in the test program included measured airplane performance parameters such as speed, acceleration, and control surface deflections along with qualitative flying evaluations obtained from pilot and crew observations. Flight tests performed to-date indicate the aircraft exhibits good handling qualities and performance, consistent with pre-flight simulations

    Aspects of Die Design for the Electromagnetic Sheet Metal Forming Process

    Get PDF
    Within the electromagnetic sheet metal forming process, workpiece velocities of more than 300m/s can occur, causing typical effects when forming into a die, which will be described and discussed in the present paper. These effects make numerous demands regarding the die design. In order to analyze these requirements, experimental as well as numerical investigations have been carried out. Thereby, special focus is put on the possibilities to accomplish these requirements, which are discussed in the following

    Novel Layers for Dies Used in Electromagnetic Sheet Metal Forming Processes

    Get PDF
    Due to the high forming velocities during electromagnetic sheet metal forming processes, a high impact force acts between workpiece and die. Here, the die surface sustains high damages shown by high wear and galling of the workpiece on the die surface. To enhance the die lifetime, a novel coating concept based on the PVD (physical vapour deposition) process was developed. In doing so, the hardness and the toughness of the designed layers were varied and adjusted to the demands of AlMg-sheet forming process

    Mass customization of teaching and learning in organizations

    Get PDF
    In search of methods that improve the efficiency of teaching and training in organizations, several authors point out that mass customization (MC) is a principle that covers individual needs of knowledge and skills and, at the same time, limits the development costs of customized training to those of mass training. MC is proven and established in the economic sector, and shows high potential for continuing education, too. The paper explores this potential and proposes a multidisciplinary, pragmatic approach to teaching and training in organizations. The first section of the paper formulates four design principles of MC deduced from an examination of economics literature. The second section presents amit™, a frame for mass customized training, designed according to the principles presented in the first section. The evaluation results encourage the further development and use of mass customized training in continuing education, and offer suggestions for future research

    A study of patent thickets

    Get PDF
    Report analysing whether entry of UK enterprises into patenting in a technology area is affected by patent thickets in the technology area
    corecore