740 research outputs found

    Optical investigation of thermoelectric topological crystalline insulator Pb0.77_{0.77}Sn0.23_{0.23}Se

    Full text link
    Pb0.77_{0.77}Sn0.23_{0.23}Se is a novel alloy of two promising thermoelectric materials PbSe and SnSe that exhibits a temperature dependent band inversion below 300 K. Recent work has shown that this band inversion also coincides with a trivial to nontrivial topological phase transition. To understand how the properties critical to thermoelectric efficiency are affected by the band inversion, we measured the broadband optical response of Pb0.77_{0.77}Sn0.23_{0.23}Se as a function of temperature. We find clear optical evidence of the band inversion at 160±15160\pm15 K, and use the extended Drude model to accurately determine a T3/2T^{3/2} dependence of the bulk carrier lifetime, associated with electron-acoustic phonon scattering. Due to the high bulk carrier doping level, no discriminating signatures of the topological surface states are found, although their presence cannot be excluded from our data.Comment: 11 pages, 6 figure

    Measurement of the temperature of an ultracold ion source using time-dependent electric fields

    Get PDF
    We report on a measurement of the characteristic temperature of an ultracold rubidium ion source, in which a cloud of laser-cooled atoms is converted to ions by photo-ionization. Extracted ion pulses are focused on a detector with a pulsed-field technique. The resulting experimental spot sizes are compared to particle-tracking simulations, from which a source temperature T=(1±2)T = (1 \pm 2) mK and the corresponding transversal reduced emittance ϵr=7.9X109\epsilon_r = 7.9 X 10^{-9} m rad eV\sqrt{\rm{eV}} are determined. We find that this result is likely limited by space charge forces even though the average number of ions per bunch is 0.022.Comment: 8 pages, 11 figure

    Optical evidence of surface state suppression in Bi based topological insulators

    Full text link
    A key challenge in condensed matter research is the optimization of topological insulator (TI) compounds for the study and future application of their unique surface states. Truly insulating bulk states would allow the exploitation of predicted surface state properties, such as protection from backscattering, dissipationless spin-polarized currents, and the emergence of novel particles. Towards this end, major progress was recently made with the introduction of highly resistive Bi2_2Te2_2Se, in which surface state conductance and quantum oscillations are observed at low temperatures. Nevertheless, an unresolved and pivotal question remains: while room temperature ARPES studies reveal clear evidence of TI surface states, their observation in transport experiments is limited to low temperatures. A better understanding of this surface state suppression at elevated temperatures is of fundamental interest, and crucial for pushing the boundary of device applications towards room-temperature operation. In this work, we simultaneously measure TI bulk and surface states via temperature dependent optical spectroscopy, in conjunction with transport and ARPES measurements. We find evidence of coherent surface state transport at low temperatures, and propose that phonon mediated coupling between bulk and surface states suppresses surface conductance as temperature rises.Comment: 13 pages, 10 figure

    Evidence for a New Excitation at the Interface Between a High-Tc Superconductor and a Topological Insulator

    Full text link
    High-temperature superconductors exhibit a wide variety of novel excitations. If contacted with a topological insulator, the lifting of spin rotation symmetry in the surface states can lead to the emergence of unconventional superconductivity and novel particles. In pursuit of this possibility, we fabricated high critical-temperature (Tc ~ 85 K) superconductor/topological insulator (Bi2Sr2CaCu2O8+delta/Bi2Te2Se) junctions. Below 75 K, a zero-bias conductance peak (ZBCP) emerges in the differential conductance spectra of this junction. The magnitude of the ZBCP is suppressed at the same rate for magnetic fields applied parallel or perpendicular to the junction. Furthermore, it can still be observed and does not split up to at least 8.5 T. The temperature and magnetic field dependence of the excitation we observe appears to fall outside the known paradigms for a ZBCP

    Chiral tunneling in single and bilayer graphene

    Get PDF
    We review chiral (Klein) tunneling in single-layer and bilayer graphene and present its semiclassical theory, including the Berry phase and the Maslov index. Peculiarities of the chiral tunneling are naturally explained in terms of classical phase space. In a one-dimensional geometry we reduced the original Dirac equation, describing the dynamics of charge carriers in the single layer graphene, to an effective Schr\"odinger equation with a complex potential. This allowed us to study tunneling in details and obtain analytic formulas. Our predictions are compared with numerical results. We have also demonstrated that, for the case of asymmetric n-p-n junction in single layer graphene, there is total transmission for normal incidence only, side resonances are suppressed.Comment: submitted to Proceedings of Nobel Symposium on graphene, May 201

    Doping-dependent charge dynamics in CuₓBi₂Se₃

    Get PDF
    Superconducting CuₓBi₂Se₃ has attracted significant attention as a candidate topological superconductor. Besides inducing superconductivity, the introduction of Cu atoms to this material has also been observed to produce a number of unusual features in DC transport and magnetic susceptibility measurements. To clarify the effect of Cu doping, we have performed a systematic optical spectroscopic study of the electronic structure of CuₓBi₂Se₃ as a function of Cu doping. Our measurements reveal an increase in the conduction band effective mass, while both the free carrier density and lifetime remain relatively constant for Cu content greater than x=0.15. The increased mass naturally explains trends in the superfluid density and residual resistivity as well as hints at the complex nature of Cu doping in Bi₂Se₃

    Pinning and collective modes of a vortex lattice in a Bose-Einstein condensate

    Full text link
    We consider the ground state of vortices in a rotating Bose-Einstein condensate that is loaded in a corotating two-dimensional optical lattice. Due to the competition between vortex interactions and their potential energy, the vortices arrange themselves in various patterns, depending on the strength of the optical potential and the vortex density. We outline a method to determine the phase diagram for arbitrary vortex filling factor. Using this method, we discuss several filling factors explicitly. For increasing strength of the optical lattice, the system exhibits a transition from the unpinned hexagonal lattice to a lattice structure where all the vortices are pinned by the optical lattice. The geometry of this fully pinned vortex lattice depends on the filling factor and is either square or triangular. For some filling factors there is an intermediate half-pinned phase where only half of the vortices is pinned. We also consider the case of a two-component Bose-Einstein condensate, where the possible coexistence of the above-mentioned phases further enriches the phase diagram. In addition, we calculate the dispersion of the low-lying collective modes of the vortex lattice and find that, depending on the structure of the ground state, they can be gapped or gapless. Moreover, in the half-pinned and fully pinned phases, the collective mode dispersion is anisotropic. Possible experiments to probe the collective mode spectrum, and in particular the gap, are suggested.Comment: 29 pages, 4 figures, changes in section

    Coming out with the media: the ritualization of self-disclosure in the Dutch television program Uit de Kast

    Get PDF
    Using the media to disclose one’s sexual identity has become an increasingly salient practice in recent years. Yet little is known about the reasons for the emergence of this form of self-disclosure. Based on an analysis of the Dutch television programme Uit de Kast (‘Out of the Closet’), this article relates the rise of mediated coming out practices to the ritualizing power of the media: we argue that media plays a quintessential role in transforming the socially unscripted act of coming out into a patterned, culturally meaningful performance. Our analysis reveals that the ritual work of the programme is embedded in the ways 1) the generic format of the show structures the self-disclosures, 2) the authority of the media is deployed to channel the coming out process, and 3) the programme, while controlling diversity, reinforces dominant societal values and ideologies. The case not only highlights how unprecedented ritual forms come to flourish in the current era of ‘participatory’ media culture, but also demonstrates how ritualization supports and naturalizes the claim that media is an effective agent to create order in everyday, ordinary lives

    Surface modes of ultracold atomic clouds with very large number of vortices

    Full text link
    We study the surface modes of some of the vortex liquids recently found by means of exact diagonalizations in systems of rapidly rotating bosons. In contrast to the surface modes of Bose condensates, we find that the surface waves have a frequency linear in the excitation angular momentum, l>0\hbar l > 0. Furthermore, in analogy with the edge waves of electronic quantum Hall states, these excitations are {\it chiral}, that is, they can be excited only for values of ll that increase the total angular momentum of the vortex liquid. However, differently from the quantum Hall phenomena for electrons, we also find other excitations that are approximately degenerate in the laboratory frame with the surface modes, and which decrease the total angular momentum by ll quanta. The surface modes of the Laughlin, as well as other scalar and vector boson states are analyzed, and their {\it observable} properties characterized. We argue that measurement of the response of a vortex liquid to a weak time-dependent potential that imparts angular momentum to the system should provide valuable information to characterize the vortex liquid. In particular, the intensity of the signal of the surface waves in the dynamic structure factor has been studied and found to depend on the type of vortex liquid. We point out that the existence of surface modes has observable consequences on the density profile of the Laughlin state. These features are due to the strongly correlated behavior of atoms in the vortex liquids. We point out that these correlations should be responsible for a remarkable stability of some vortex liquids with respect to three-body losses.Comment: 28 pages + 6 EPS figures. Final version as accepted for publication in Phys. Rev.
    corecore