2,823 research outputs found
Enhancement of synchronization in a hybrid neural circuit by spike timing dependent plasticity
Synchronization of neural activity is fundamental for many functions of the brain. We demonstrate that spike-timing dependent plasticity (STDP) enhances synchronization (entrainment) in a hybrid circuit composed of a spike generator, a dynamic clamp emulating an excitatory plastic synapse, and a chemically isolated neuron from the Aplysia abdominal ganglion. Fixed-phase entrainment of the Aplysia neuron to the spike generator is possible for a much wider range of frequency ratios and is more precise and more robust with the plastic synapse than with a nonplastic synapse of comparable strength. Further analysis in a computational model of HodgkinHuxley-type neurons reveals the mechanism behind this significant enhancement in synchronization. The experimentally observed STDP plasticity curve appears to be designed to adjust synaptic strength to a value suitable for stable entrainment of the postsynaptic neuron. One functional role of STDP might therefore be to facilitate synchronization or entrainment of nonidentical neurons
Nonlinear dynamics in one dimension: On a criterion for coarsening and its temporal law
We develop a general criterion about coarsening for a class of nonlinear
evolution equations describing one dimensional pattern-forming systems. This
criterion allows one to discriminate between the situation where a coarsening
process takes place and the one where the wavelength is fixed in the course of
time. An intermediate scenario may occur, namely `interrupted coarsening'. The
power of the criterion lies in the fact that the statement about the occurrence
of coarsening, or selection of a length scale, can be made by only inspecting
the behavior of the branch of steady state periodic solutions. The criterion
states that coarsening occurs if lambda'(A)>0 while a length scale selection
prevails if lambda'(A)<0, where is the wavelength of the pattern and A
is the amplitude of the profile. This criterion is established thanks to the
analysis of the phase diffusion equation of the pattern. We connect the phase
diffusion coefficient D(lambda) (which carries a kinetic information) to
lambda'(A), which refers to a pure steady state property. The relationship
between kinetics and the behavior of the branch of steady state solutions is
established fully analytically for several classes of equations. Another
important and new result which emerges here is that the exploitation of the
phase diffusion coefficient enables us to determine in a rather straightforward
manner the dynamical coarsening exponent. Our calculation, based on the idea
that |D(lambda)|=lambda^2/t, is exemplified on several nonlinear equations,
showing that the exact exponent is captured. Some speculations about the
extension of the present results to higher dimension are outlined.Comment: 16 pages. Only a few minor changes. Accepted for publication in
Physical Review
Essential spectra and exponential estimates of eigenfunctions of lattice operators of quantum mechanics
This paper is devoted to estimates of the exponential decay of eigenfunctions
of difference operators on the lattice Z^n which are discrete analogs of the
Schr\"{o}dinger, Dirac and square-root Klein-Gordon operators. Our
investigation of the essential spectra and the exponential decay of
eigenfunctions of the discrete spectra is based on the calculus of so-called
pseudodifference operators (i.e., pseudodifferential operators on the group
Z^n) with analytic symbols and on the limit operators method. We obtain a
description of the location of the essential spectra and estimates of the
eigenfunctions of the discrete spectra of the main lattice operators of quantum
mechanics, namely: matrix Schr\"{o}dinger operators on Z^n, Dirac operators on
Z^3, and square root Klein-Gordon operators on Z^n
Pattern formation without heating in an evaporative convection experiment
We present an evaporation experiment in a single fluid layer. When latent
heat associated to the evaporation is large enough, the heat flow through the
free surface of the layer generates temperature gradients that can destabilize
the conductive motionless state giving rise to convective cellular structures
without any external heating. The sequence of convective patterns obtained here
without heating, is similar to that obtained in B\'enard-Marangoni convection.
This work present the sequence of spatial bifurcations as a function of the
layer depth. The transition between square to hexagonal pattern, known from
non-evaporative experiments, is obtained here with a similar change in
wavelength.Comment: Submitted to Europhysics Letter
Coarsening in potential and nonpotential models of oblique stripe patterns
We study the coarsening of two-dimensional oblique stripe patterns by
numerically solving potential and nonpotential anisotropic Swift-Hohenberg
equations. Close to onset, all models exhibit isotropic coarsening with a
single characteristic length scale growing in time as . Further from
onset, the characteristic lengths along the preferred directions and
grow with different exponents, close to 1/3 and 1/2, respectively. In
this regime, one-dimensional dynamical scaling relations hold. We draw an
analogy between this problem and Model A in a stationary, modulated external
field. For deep quenches, nonpotential effects produce a complicated
dislocation dynamics that can lead to either arrested or faster-than-power-law
growth, depending on the model considered. In the arrested case, small isolated
domains shrink down to a finite size and fail to disappear. A comparison with
available experimental results of electroconvection in nematics is presented.Comment: 13 pages, 13 figures. To appear in Phys. Rev.
- …
