14,123 research outputs found

    A note on classical and quantum unimodular gravity

    Get PDF
    We discuss unimodular gravity at a classical level, and in terms of its extension into the UV through an appropriate path integral representation. Classically, unimodular gravity is simply a gauge fixed version of General Relativity (GR), and as such it yields identical dynamics and physical predictions. We clarify this and explain why there is no sense in which it can "bring a new perspective" to the cosmological constant problem. The quantum equivalence between unimodular gravity and GR is more of a subtle question, but we present an argument that suggests one can always maintain the equivalence up to arbitrarily high momenta. As a corollary to this, we argue that whenever inequivalence is seen at the quantum level, that just means we have defined two different quantum theories that happen to share a classical limit.Comment: 5 pages; v2: Some clarifying comments added. Version to appear in European Physical Journal

    Procedure for dispersing fiber bundles

    Get PDF
    Fiber bundles are dispersed and fibers are cleaned within enclosed container; therefore, safety clothing, masks, and eye protection are not required. Procedure also could be used wherever materials, such as fiberglass or insulation, require dispersion, fluffing, or cleaning. Process could be automated into continuous operation for handling large quantities of fiber

    Subhalo accretion through filaments

    Full text link
    We track subhalo orbits of galaxy and group sized halos in cosmological simulations. We identify filamentary structures around halos and we use these to define a sample of subhalos accreted from filaments as well as a control sample of subhalos accreted from other directions. We use these samples to study differences in satellite orbits produced by filamentary accretion. Our results depend on host halo mass. We find that for low masses, subhalos accreted from filaments show 10%\sim10\% shorter lifetimes compared to the control sample, they show a tendency towards more radial orbits, reach halo central regions earlier, and are more likely to merge with the host. For higher mass halos this lifetime difference dissipates and even reverses for cluster sized halos. This behavior appears to be connected to the fact that more massive hosts are connected to stronger filaments with higher velocity coherence and density, with slightly more radial subhalo orbits. Because subhalos tend to follow the coherent flow of the filament, it is possible that such thick filaments are enough to shield the subhalo from the effect of dynamical friction at least during their first infall. We also identify subhalo pairs/clumps which merge with one another after accretion. They survive as a clump for only a very short time, which is even shorter for higher subhalo masses, suggesting that the Magellanic Clouds and other Local group satellite associations, may have entered the MW virial radius very recently and probably are in their first infall. Filaments boost the accretion of satellite associations.Comment: Accepted for publication in Ap

    Method and apparatus for fluffing, separating, and cleaning fibers

    Get PDF
    A perforated tube is housed in a chamber in which vacuum is drawn. An air jet is directed into one end of the tube and fiber bundles are fed into the jet which separates and dispenses individual fibers from the bundle, fluffs them, cleanses them of any particulate material, and carries them into the tube. The tube retains the fibers while fiber fragments, undesirably short fibers and particulate matter are drawn by the vacuum and resultant air flow out of the tube through its perforations to a suitable discharge

    Dark Matter annihilation energy output and its effects on the high-z IGM

    Full text link
    We study the case of DM self annihilation, in order to assess its importance as an energy injection mechanism, to the IGM in general, and to the medium within particular DM haloes. We consider thermal relic WIMP particles with masses of 10GeV and 1TeV and we analyse in detail the clustering properties of DM in a Λ\LambdaCDM cosmology, on all hierarchy levels, from haloes and their mass function, to subhaloes and the DM density profiles within them, considering adiabatic contraction by the presence of a SMBH. We then compute the corresponding energy output, concluding that DM annihilation does not constitute an important feedback mechanism. We also calculate the effects that DM annihilation has on the IGM temperature and ionization fraction, and we find that assuming maximal energy absorption, at z ~ 10, for the case of a 1TeV WIMP, the ionization fraction could be raised to 6×1046 \times 10^{-4} and the temperature to 10K, and in the case of a 10GeV WIMP, the IGM temperature could be raised to 200K and the ionization fraction to 8×1038 \times 10^{-3}. We conclude that DM annihilations cannot be regarded as an alternative reionization scenario. Regarding the detectability of the WIMP through the modifications to the 21 cm differential brightness temperature signal (δ\deltaTb), we conclude that a thermal relic WIMP with mass of 1TeV is not likely to be detected from the global signal alone, except perhaps at the 1-3mK level in the frequency range 30MHz < ν\nu < 35MHz corresponding to 40 < z < 46. However, a 10GeV mass WIMP may be detectable at the 1-3mK level in the frequency range 55MHz < ν\nu < 119MHz corresponding to 11 < z < 25, and at the 1-10mK level in the frequency range 30MHz < ν\nu < 40MHz corresponding to 35 < z < 46.Comment: 23 pages, 12 figures, accepted for publication in MNRA

    Angular momentum evolution in Dark Matter haloes: a study of the Bolshoi and Millennium simulations

    Full text link
    We use three different cosmological dark matter simulations to study how the orientation of the angular momentum vector (AM) in dark matter haloes evolve with time. We find that haloes in this kind of simulations are constantly affected by a spurious change of mass, which translates into an artificial change in the orientation of the AM. After removing the haloes affected by artificial mass change, we found that the change in the orientation of the AM vector is correlated with time. The change in its angle and direction (i.e. the angle subtended by the AM vector in two consecutive timesteps) that affect the AM vector has a dependence on the change of mass that affects a halo, the time elapsed in which the change of mass occurs and the halo mass. We create a Monte-Carlo simulation that reproduces the change of angle and direction of the AM vector. We reproduce the angular separation of the AM vector since a look back time of 8.5 Gyrs to today ( α\rm \alpha) with an accuracy of approximately 0.05 in cos(α)\rm cos(\alpha). We are releasing this Monte-Carlo simulation together with this publication. We also create a Monte Carlo simulation that reproduces the change of the AM modulus. We find that haloes in denser environments display the most dramatic evolution in their AM direction, as well as haloes with a lower specific AM modulus. These relations could be used to improve the way we follow the AM vector in low-resolution simulations.Comment: Accepted by MNRA

    MEXICAN-U.S. FRESH TOMATO TRADE: AN ANALYSIS OF VOLUME, PRICES AND TRANSACTION COSTS

    Get PDF
    Tomato trade between the U.S. and Mexico has grown significantly during the past decade. Although the tariff reductions accorded under NAFTA may explain part of his increase, there are other supply and demand factors that affect trade flows. This study develops a U.S.-Mexico tomato trade model, with special focus on the interdependence between trading costs and the volume of Mexican imports. As expected, the exchange rate is a significant determinant of trading costs, but the level of tariffs was insignificant in both the trading and tomato supply equations. The shipping point price level and volume of imports also appear to affect these costs. For the import supply and demand models, there appears to be a significant share of imports that rely on previous levels of imports, rather than the expected economic factors (prices, income, and producer price index). We conclude that the structure and performance of the tomato trading market is changing, and may be more influential than tariff reductions in explaining increased trade flows.Crop Production/Industries, International Relations/Trade,

    The Intrinsic Shape of Galaxies in SDSS/Galaxy Zoo

    Full text link
    By modelling the axis ratio distribution of SDSS DR8 galaxies we find the intrinsic 3D shapes of spirals and ellipticals. We use morphological information from the Galaxy Zoo project and assume a non-parametric distribution intrinsic of shapes, while taking into account dust extinction. We measure the dust extinction of the full sample of spiral galaxies and find a smaller value than previous estimations, with an edge-on extinction of E0=0.2840.026+0.015E_0 = 0.284^{+0.015}_{-0.026} in the SDSS r band. We also find that the distribution of minor to major axis ratio has a mean value of 0.267±0.009 0.267 \pm 0.009 , slightly larger than previous estimates mainly due to the lower extinction used; the same affects the circularity of galactic discs, which are found to be less round in shape than in previous studies, with a mean ellipticity of 0.215±0.0130.215 \pm 0.013. For elliptical galaxies, we find that the minor to major axis ratio, with a mean value of 0.584±0.0060.584 \pm 0.006, is larger than previous estimations due to the removal of spiral interlopers present in samples with morphological information from photometric profiles. These interlopers are removed when selecting ellipticals using Galaxy Zoo data. We find that the intrinsic shapes of galaxies and their dust extinction vary with absolute magnitude, colour and physical size. We find that bright elliptical galaxies are more spherical than faint ones, a trend that is also present with galaxy size, and that there is no dependence of elliptical galaxy shape with colour. For spiral galaxies we find that the reddest ones have higher dust extinction as expected, due to the fact that this reddening is mainly due to dust. We also find that the thickness of discs increases with luminosity and size, and that brighter, smaller and redder galaxies have less round discs.Comment: 15 pages, 16 figures, submitted to MNRA
    corecore