4,664 research outputs found

    Fatiguing Effects of Indirect Vibration Stimulation in Upper Limb Muscles- pre, post and during Isometric Contractions Superimposed on Upper Limb Vibration

    Get PDF
    © 2019 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ , which permits unrestricted use, provided the original author and source are credited.Whole-body vibration and upper limb vibration (ULV) continue to gain popularity as exercise intervention for rehabilitation and sports applications. However, the fatiguing effects of indirect vibration stimulation are not yet fully understood. We investigated the effects of ULV stimulation superimposed on fatiguing isometric contractions using a purpose developed upper limb stimulation device. Thirteen healthy volunteers were exposed to both ULV superimposed to fatiguing isometric contractions (V) and isometric contractions alone Control (C). Both Vibration (V) and Control (C) exercises were performed at 80% of the maximum voluntary contractions. The stimulation used was 30 Hz frequency of 0.4 mm amplitude. Surface-electromyographic (EMG) activity of the Biceps Brachii, Triceps Brachii and Flexor Carpi Radialis were measured. EMG amplitude (EMGrms) and mean frequency (MEF) were computed to quantify muscle activity and fatigue levels. All muscles displayed significantly higher reduction in MEFs and a corresponding significant increase in EMGrms with the V than the Control, during fatiguing contractions (p < 0.05). Post vibration, all muscles showed higher levels of MEFs after recovery compared to the control. Our results show that near-maximal isometric fatiguing contractions superimposed on vibration stimulation lead to a higher rate of fatigue development compared to the isometric contraction alone in the upper limb muscles. Results also show higher manifestation of mechanical fatigue post treatment with vibration compared to the control. Vibration superimposed on isometric contraction not only seems to alter the neuromuscular function during fatiguing efforts by inducing higher neuromuscular load but also post vibration treatment.Peer reviewedFinal Published versio

    Long-term polarization observations of Mira variable stars suggest asymmetric structures

    Full text link
    Mira and semi-regular variable stars have been studied for centuries but continue to be enigmatic. One unsolved mystery is the presence of polarization from these stars. In particular, we present 40 years of polarization measurements for the prototype o Ceti and V CVn and find very different phenomena for each star. The polarization fraction and position angle for Mira is found to be small and highly variable. On the other hand, the polarization fraction for V CVn is large and variable, from 2 - 7 %, and its position angle is approximately constant, suggesting a long-term asymmetric structure. We suggest a number of potential scenarios to explain these observations.Comment: 2 pages, 1 figure, poster presented at IAU Symposium 301, Precision Asteroseismology, August 2013, Wroclaw, Polan

    Wigner crystallization in transition metal dichalcogenides: A new approach to correlation energy

    Full text link
    We introduce a new approach for the correlation energy of one- and two-valley two-dimensional electron gas (2DEG) systems. Our approach is based on a random phase approximation at high densities and a classical approach at low densities, with interpolation between the two limits. This approach gives excellent agreement with available Quantum Monte Carlo (QMC) calculations. We employ the two-valley 2DEG model to describe the electron correlations in monolayer transition metal dichalcogenides (TMDs). The zero-temperature transition from a Fermi liquid to a quantum Wigner crystal phase in monolayer TMDs is obtained using density-functional theory within the local-density approximation. Consistent with QMC, we find that electrons crystallize at rs=30.5r_s=30.5 in one-valley 2DEG. For two-valleys, we predict Wigner crystallization at rs=29.5r_s= 29.5, indicating that valley degeneracy has little effect on the critical rsr_s, in contrast to an earlier claim.Comment: 5 pages, 3 figure

    Crack detection in a rotating shaft using artificial neural networks and PSD characterisation

    Get PDF
    Peer reviewedPostprin

    Enhancement of electron-hole superfluidity in double few-layer graphene

    Full text link
    We propose two coupled electron-hole sheets of few-layer graphene as a new nanostructure to observe superfluidity at enhanced densities and enhanced transition temperatures. For ABC stacked few-layer graphene we show that the strongly correlated electron-hole pairing regime is readily accessible experimentally using current technologies. We find for double trilayer and quadlayer graphene sheets spatially separated by a nano-thick hexagonal boron-nitride insulating barrier, that the transition temperature for electron-hole superfluidity can approach temperatures of 40 K.Comment: 17 pages, 5 figure

    Angular distribution of positrons emitted from metal surfaces

    Get PDF
    The effect of inelastic scattering processes on the angular distribution of positrons spontaneously emitted from metal surfaces is investigated. Angular and energy spectra are calculated for positrons suffering energy loss due to electron-hole excitation in emission from materials with low (aluminum) and high (tungsten) positron work functions.Peer reviewe

    Iron Displacements and Magnetoelastic Coupling in the Spin-Ladder Compound BaFe2Se3

    Full text link
    We report long-range ordered antiferromagnetism concomitant with local iron displacements in the spin-ladder compound BaFe2_2Se3_3. Short-range magnetic correlations, present at room temperature, develop into long-range antiferromagnetic order below TN_N = 256 K, with no superconductivity down to 1.8 K. Built of ferromagnetic Fe4_4 plaquettes, the magnetic ground state correlates with local displacements of the Fe atoms. These iron displacements imply significant magnetoelastic coupling in FeX4_4-based materials, an ingredient hypothesized to be important in the emergence of superconductivity. This result also suggests that knowledge of these local displacements is essential for properly understanding the electronic structure of these systems. As with the copper oxide superconductors two decades ago, our results highlight the importance of reduced dimensionality spin ladder compounds in the study of the coupling of spin, charge, and atom positions in superconducting materials
    corecore