4,664 research outputs found
Fatiguing Effects of Indirect Vibration Stimulation in Upper Limb Muscles- pre, post and during Isometric Contractions Superimposed on Upper Limb Vibration
© 2019 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ , which permits unrestricted use, provided the original author and source are credited.Whole-body vibration and upper limb vibration (ULV) continue to gain popularity as exercise intervention for rehabilitation and sports applications. However, the fatiguing effects of indirect vibration stimulation are not yet fully understood. We investigated the effects of ULV stimulation superimposed on fatiguing isometric contractions using a purpose developed upper limb stimulation device. Thirteen healthy volunteers were exposed to both ULV superimposed to fatiguing isometric contractions (V) and isometric contractions alone Control (C). Both Vibration (V) and Control (C) exercises were performed at 80% of the maximum voluntary contractions. The stimulation used was 30 Hz frequency of 0.4 mm amplitude. Surface-electromyographic (EMG) activity of the Biceps Brachii, Triceps Brachii and Flexor Carpi Radialis were measured. EMG amplitude (EMGrms) and mean frequency (MEF) were computed to quantify muscle activity and fatigue levels. All muscles displayed significantly higher reduction in MEFs and a corresponding significant increase in EMGrms with the V than the Control, during fatiguing contractions (p < 0.05). Post vibration, all muscles showed higher levels of MEFs after recovery compared to the control. Our results show that near-maximal isometric fatiguing contractions superimposed on vibration stimulation lead to a higher rate of fatigue development compared to the isometric contraction alone in the upper limb muscles. Results also show higher manifestation of mechanical fatigue post treatment with vibration compared to the control. Vibration superimposed on isometric contraction not only seems to alter the neuromuscular function during fatiguing efforts by inducing higher neuromuscular load but also post vibration treatment.Peer reviewedFinal Published versio
Long-term polarization observations of Mira variable stars suggest asymmetric structures
Mira and semi-regular variable stars have been studied for centuries but
continue to be enigmatic. One unsolved mystery is the presence of polarization
from these stars. In particular, we present 40 years of polarization
measurements for the prototype o Ceti and V CVn and find very different
phenomena for each star. The polarization fraction and position angle for Mira
is found to be small and highly variable. On the other hand, the polarization
fraction for V CVn is large and variable, from 2 - 7 %, and its position angle
is approximately constant, suggesting a long-term asymmetric structure. We
suggest a number of potential scenarios to explain these observations.Comment: 2 pages, 1 figure, poster presented at IAU Symposium 301, Precision
Asteroseismology, August 2013, Wroclaw, Polan
Wigner crystallization in transition metal dichalcogenides: A new approach to correlation energy
We introduce a new approach for the correlation energy of one- and two-valley
two-dimensional electron gas (2DEG) systems. Our approach is based on a random
phase approximation at high densities and a classical approach at low
densities, with interpolation between the two limits. This approach gives
excellent agreement with available Quantum Monte Carlo (QMC) calculations. We
employ the two-valley 2DEG model to describe the electron correlations in
monolayer transition metal dichalcogenides (TMDs). The zero-temperature
transition from a Fermi liquid to a quantum Wigner crystal phase in monolayer
TMDs is obtained using density-functional theory within the local-density
approximation. Consistent with QMC, we find that electrons crystallize at
in one-valley 2DEG. For two-valleys, we predict Wigner
crystallization at , indicating that valley degeneracy has little
effect on the critical , in contrast to an earlier claim.Comment: 5 pages, 3 figure
Crack detection in a rotating shaft using artificial neural networks and PSD characterisation
Peer reviewedPostprin
Enhancement of electron-hole superfluidity in double few-layer graphene
We propose two coupled electron-hole sheets of few-layer graphene as a new
nanostructure to observe superfluidity at enhanced densities and enhanced
transition temperatures. For ABC stacked few-layer graphene we show that the
strongly correlated electron-hole pairing regime is readily accessible
experimentally using current technologies. We find for double trilayer and
quadlayer graphene sheets spatially separated by a nano-thick hexagonal
boron-nitride insulating barrier, that the transition temperature for
electron-hole superfluidity can approach temperatures of 40 K.Comment: 17 pages, 5 figure
Angular distribution of positrons emitted from metal surfaces
The effect of inelastic scattering processes on the angular distribution of positrons spontaneously emitted from metal surfaces is investigated. Angular and energy spectra are calculated for positrons suffering energy loss due to electron-hole excitation in emission from materials with low (aluminum) and high (tungsten) positron work functions.Peer reviewe
Iron Displacements and Magnetoelastic Coupling in the Spin-Ladder Compound BaFe2Se3
We report long-range ordered antiferromagnetism concomitant with local iron
displacements in the spin-ladder compound BaFeSe. Short-range magnetic
correlations, present at room temperature, develop into long-range
antiferromagnetic order below T = 256 K, with no superconductivity down to
1.8 K. Built of ferromagnetic Fe plaquettes, the magnetic ground state
correlates with local displacements of the Fe atoms. These iron displacements
imply significant magnetoelastic coupling in FeX-based materials, an
ingredient hypothesized to be important in the emergence of superconductivity.
This result also suggests that knowledge of these local displacements is
essential for properly understanding the electronic structure of these systems.
As with the copper oxide superconductors two decades ago, our results highlight
the importance of reduced dimensionality spin ladder compounds in the study of
the coupling of spin, charge, and atom positions in superconducting materials
- …
