3,502 research outputs found
Differential Imaging with a Multicolor Detector Assembly: A New ExoPlanet Finder Concept
Simultaneous spectral differential imaging is a high contrast technique by
which subtraction of simultaneous images reduces noise from atmospheric
speckles and optical aberrations. Small non-common wave front errors between
channels can seriously degrade its performance. We present a new concept, a
multicolor detector assembly (MCDA), which can eliminate this problem. The
device consists of an infrared detector and a microlens array onto the flat
side of which a checkerboard pattern of narrow-band micro-filters is deposited,
each micro-filter coinciding with a microlens. Practical considerations for
successful implementation of the technique are mentioned. Numerical simulations
predict a noise attenuation of 10^-3 at 0.5" for a 10^5 seconds integration on
a mH=5 star of Strehl ratio 0.9 taken with an 8-m telescope. This reaches a
contrast of 10^-7 at an angular distance of 0.5" from the center of the star
image.Comment: 13 pages, 5 figures, accepted APJ
Bilepton Production at Hadron Colliders
We examine, as model-independently as possible, the production of bileptons
at hadron colliders. When a particular model is necessary or useful, we choose
the 3-3-1 model. We consider a variety of processes: q anti-q -> Y^{++} Y^{--},
u anti-d -> Y^{++} Y^{-}, anti-u d -> Y^+ Y^{--}, q anti-q -> Y^{++} e^{-}
e^{-}, q anti-q -> phi^{++} phi^{--}, u anti-d -> -> phi^{++} phi^{-}, and
anti-u d -> phi^{+} phi^{--}, where Y and phi are vector and scalar bileptons,
respectively. Given the present low-energy constraints, we find that at the
Tevatron, vector bileptons are unobservable, while light scalar bileptons
(M_phi <= 300 GeV) are just barely observable. At the LHC, the reach is
extended considerably: vector bileptons of mass M_Y <= 1 TeV are observable, as
are scalar bileptons of mass M_phi <= 850 GeV.Comment: 20 pages (LATEX), 7 figures, minor modification
Unsupervised Named-Entity Recognition: Generating Gazetteers and Resolving Ambiguity
In this paper, we propose a named-entity recognition (NER) system that addresses two major limitations frequently discussed in the field. First, the system requires no human intervention such as manually labeling training data or creating gazetteers. Second, the system can handle more than the three classical named-entity types (person, location, and organization). We describe the system’s architecture and compare its performance with a supervised system. We experimentally evaluate the system on a standard corpus, with the three classical named-entity types, and also on a new corpus, with a new named-entity type (car brands)
Angular Differential Imaging: a Powerful High-Contrast Imaging Technique
Angular differential imaging is a high-contrast imaging technique that
reduces quasi-static speckle noise and facilitates the detection of nearby
companions. A sequence of images is acquired with an altitude/azimuth telescope
while the instrument field derotator is switched off. This keeps the instrument
and telescope optics aligned and allows the field of view to rotate with
respect to the instrument. For each image, a reference PSF is constructed from
other appropriately-selected images of the same sequence and subtracted to
remove quasi-static PSF structure. All residual images are then rotated to
align the field and are combined. Observed performances are reported for Gemini
North data. It is shown that quasi-static PSF noise can be reduced by a factor
\~5 for each image subtraction. The combination of all residuals then provides
an additional gain of the order of the square root of the total number of
acquired images. A total speckle noise attenuation of 20-50 is obtained for
one-hour long observing sequences compared to a single 30s exposure. A PSF
noise attenuation of 100 was achieved for two-hour long sequences of images of
Vega, reaching a 5-sigma contrast of 20 magnitudes for separations greater than
8". For a 30-minute long sequence, ADI achieves 30 times better signal-to-noise
than a classical observation technique. The ADI technique can be used with
currently available instruments to search for ~1MJup exoplanets with orbits of
radii between 50 and 300 AU around nearby young stars. The possibility of
combining the technique with other high-contrast imaging methods is briefly
discussed.Comment: 27 pages, 7 figures, accepted for publication in Ap
Automatic Dream Sentiment Analysis
In this position paper, we propose a first step toward automatic analysis of sentiments in dreams. 100 dreams were sampled from a dream bank created for a normative study of dreams. Two human judges assigned a score to describe dream sentiments. We ran four baseline algorithms in an attempt to automate the rating of sentiments in dreams. Particularly, we compared the General Inquirer (GI) tool, the Linguistic Inquiry and Word Count (LIWC), a weighted version of the GI lexicon and of the HM lexicon and a standard bag-of-words. We show that machine learning allows automating the human judgment with accuracy superior to majority class choice
Effects of Quasi-Static Aberrations in Faint Companion Searches
We present the first results obtained at CFHT with the TRIDENT infrared
camera, dedicated to the detection of faint companions close to bright nearby
stars. The camera's main feature is the acquisition of three simultaneous
images in three wavelengths (simultaneous differential imaging) across the
methane absorption bandhead at 1.6 micron, that enables a precise subtraction
of the primary star PSF while keeping the companion signal. The main limitation
is non-common path aberrations between the three optical paths that slightly
decorrelate the PSFs. Two types of PSF calibrations are combined with the
differential simultaneous imaging technique to further attenuate the PSF:
reference star subtraction and instrument rotation to smooth aberrations. It is
shown that a faint companion with a DeltaH of 10 magnitudes would be detected
at 0.5 arcsec from the primary.Comment: 12 pages, 10 figures, to appear in Astronomy with High Contrast
Imaging, EAS Publications Serie
Spectrally Similar Incommensurable 3-Manifolds
Reid has asked whether hyperbolic manifolds with the same geodesic length spectrum must be commensurable. Building toward a negative answer to this question, we construct examples of hyperbolic 3–manifolds that share an arbitrarily large portion of the length spectrum but are not commensurable. More precisely, for every n ≫ 0, we construct a pair of incommensurable hyperbolic 3–manifolds Nn and Nµn whose volume is approximately n and whose length spectra agree up to length n.
Both Nn and Nµn are built by gluing two standard submanifolds along a complicated pseudo-Anosov map, ensuring that these manifolds have a very thick collar about an essential surface. The two gluing maps differ by a hyper-elliptic involution along this surface. Our proof also involves a new commensurability criterion based on pairs of pants
- …
