17,532 research outputs found

    THE LOW-INCOME FARM PROBLEM

    Get PDF
    Agricultural and Food Policy,

    Handbook explaining the fundamentals of nuclear and atomic physics

    Get PDF
    Indoctrination document presents nuclear, reactor, and atomic physics in an easy, straightforward manner. The entire subject of nuclear physics including atomic structure ionization, isotopes, radioactivity, and reactor dynamics is discussed

    Output-input stability and minimum-phase nonlinear systems

    Full text link
    This paper introduces and studies the notion of output-input stability, which represents a variant of the minimum-phase property for general smooth nonlinear control systems. The definition of output-input stability does not rely on a particular choice of coordinates in which the system takes a normal form or on the computation of zero dynamics. In the spirit of the ``input-to-state stability'' philosophy, it requires the state and the input of the system to be bounded by a suitable function of the output and derivatives of the output, modulo a decaying term depending on initial conditions. The class of output-input stable systems thus defined includes all affine systems in global normal form whose internal dynamics are input-to-state stable and also all left-invertible linear systems whose transmission zeros have negative real parts. As an application, we explain how the new concept enables one to develop a natural extension to nonlinear systems of a basic result from linear adaptive control.Comment: Revised version, to appear in IEEE Transactions on Automatic Control. See related work in http://www.math.rutgers.edu/~sontag and http://black.csl.uiuc.edu/~liberzo

    Large Magnetic Moments of Arsenic-Doped Mn Clusters and their Relevance to Mn-Doped III-V Semiconductor Ferromagnetism

    Get PDF
    We report electronic and magnetic structure of arsenic-doped manganese clusters from density-functional theory using generalized gradient approximation for the exchange-correlation energy. We find that arsenic stabilizes manganese clusters, though the ferromagnetic coupling between Mn atoms are found only in Mn2_2As and Mn4_4As clusters with magnetic moments 9 μB\mu_B and 17 μB\mu_B, respectively. For all other sizes, x=x= 3, 5-10, Mnx_xAs clusters show ferrimagnetic coupling. It is suggested that, if grown during the low temperature MBE, the giant magnetic moments due to ferromagnetic coupling in Mn2_2As and Mn4_4As clusters could play a role on the ferromagnetism and on the variation observed in the Curie temperature of Mn-doped III-V semiconductors.Comment: 4 Pages, 3 Figures[1 EPS and 2 JPG files], RevTeX

    Economic Analysis in the Pacific Northwest Land Resources Project: Theoretical Considerations and Preliminary Results

    Get PDF
    The Pacific Northwest Land Resources Inventory Demonstration Project i s an a ttempt to combine a whole spectrum of heterogeneous geographic, institutional and applications elements in a synergistic approach to the evaluation of remote sensing techniques. This diversity is the prime motivating factor behind a theoretical investigation of alternative economic analysis procedures. For a multitude of reasons--simplicity, ease of understanding, financial constraints and credibility, among others--cost-effectiveness emerges as the most practical tool for conducting such evaluation determinatIons in the Pacific Northwest. Preliminary findings in two water resource application areas suggest, in conformity with most published studies, that Lands at-aided data collection methods enjoy substantial cost advantages over alternative techniques. The pntential for sensitivity analysis based on cost/accuracy tradeoffs is considered on a theoretical plane in the absence of current accuracy figures concerning the Landsat-aided approach

    A Hybrid Observer for a Distributed Linear System with a Changing Neighbor Graph

    Full text link
    A hybrid observer is described for estimating the state of an m>0m>0 channel, nn-dimensional, continuous-time, distributed linear system of the form x˙=Ax,  yi=Cix,  i∈{1,2,…,m}\dot{x} = Ax,\;y_i = C_ix,\;i\in\{1,2,\ldots, m\}. The system's state xx is simultaneously estimated by mm agents assuming each agent ii senses yiy_i and receives appropriately defined data from each of its current neighbors. Neighbor relations are characterized by a time-varying directed graph N(t)\mathbb{N}(t) whose vertices correspond to agents and whose arcs depict neighbor relations. Agent ii updates its estimate xix_i of xx at "event times" t1,t2,…t_1,t_2,\ldots using a local observer and a local parameter estimator. The local observer is a continuous time linear system whose input is yiy_i and whose output wiw_i is an asymptotically correct estimate of LixL_ix where LiL_i a matrix with kernel equaling the unobservable space of (Ci,A)(C_i,A). The local parameter estimator is a recursive algorithm designed to estimate, prior to each event time tjt_j, a constant parameter pjp_j which satisfies the linear equations wk(tj−τ)=Lkpj+μk(tj−τ),  k∈{1,2,…,m}w_k(t_j-\tau) = L_kp_j+\mu_k(t_j-\tau),\;k\in\{1,2,\ldots,m\}, where τ\tau is a small positive constant and μk\mu_k is the state estimation error of local observer kk. Agent ii accomplishes this by iterating its parameter estimator state ziz_i, qq times within the interval [tj−τ,tj)[t_j-\tau, t_j), and by making use of the state of each of its neighbors' parameter estimators at each iteration. The updated value of xix_i at event time tjt_j is then xi(tj)=eAτzi(q)x_i(t_j) = e^{A\tau}z_i(q). Subject to the assumptions that (i) the neighbor graph N(t)\mathbb{N}(t) is strongly connected for all time, (ii) the system whose state is to be estimated is jointly observable, (iii) qq is sufficiently large, it is shown that each estimate xix_i converges to xx exponentially fast as t→∞t\rightarrow \infty at a rate which can be controlled.Comment: 7 pages, the 56th IEEE Conference on Decision and Contro

    Microwave Electronics

    Get PDF
    Contains a report on a research project.Lincoln Laboratory (Purchase Order DDL B-00283)United States ArmyUnited States Air Force (Contract AF19(604)-5200)United States Navy, Office of Naval Research (Nonr-1841(49)

    Piezoconductivity of gated suspended graphene

    Full text link
    We investigate the conductivity of graphene sheet deformed over a gate. The effect of the deformation on the conductivity is twofold: The lattice distortion can be represented as pseudovector potential in the Dirac equation formalism, whereas the gate causes inhomogeneous density redistribution. We use the elasticity theory to find the profile of the graphene sheet and then evaluate the conductivity by means of the transfer matrix approach. We find that the two effects provide functionally different contributions to the conductivity. For small deformations and not too high residual stress the correction due to the charge redistribution dominates and leads to the enhancement of the conductivity. For stronger deformations, the effect of the lattice distortion becomes more important and eventually leads to the suppression of the conductivity. We consider homogeneous as well as local deformation. We also suggest that the effect of the charge redistribution can be best measured in a setup containing two gates, one fixing the overall charge density and another one deforming graphene locally
    • …
    corecore