5,654 research outputs found
Tuning the electrically evaluated electron Lande g factor in GaAs quantum dots and quantum wells of different well widths
We evaluate the Lande g factor of electrons in quantum dots (QDs) fabricated
from GaAs quantum well (QW) structures of different well width. We first
determine the Lande electron g factor of the QWs through resistive detection of
electron spin resonance and compare it to the enhanced electron g factor
determined from analysis of the magneto-transport. Next, we form laterally
defined quantum dots using these quantum wells and extract the electron g
factor from analysis of the cotunneling and Kondo effect within the quantum
dots. We conclude that the Lande electron g factor of the quantum dot is
primarily governed by the electron g factor of the quantum well suggesting that
well width is an ideal design parameter for g-factor engineering QDs
Numerical modeling of dynamic powder compaction using the Kawakita equation of state
Dynamic powder compaction is analyzed using the assumption that the powder behaves, while it is being compacted, like a hydrodynamic fluid in which deviatoric stress and heat conduction effects can be ignored throughout the process. This enables techniques of computational fluid dynamics such the equilibrium flux method to be used as a modeling tool. The equation of state of the powder under compression is assumed to be a modified version of the Kawakita loading curve. Computer simulations using this model are performed for conditions matching as closely as possible with those from experiments by Page and Killen [Powder Metall. 30, 233 (1987)]. The numerical and experimental results are compared and a surprising degree of qualitative agreement is observed
Lens space surgeries on A'Campo's divide knots
It is proved that every knot in the major subfamilies of J. Berge's lens
space surgery (i.e., knots yielding a lens space by Dehn surgery) is presented
by an L-shaped (real) plane curve as a "divide knot" defined by N. A'Campo in
the context of singularity theory of complex curves. For each knot given by
Berge's parameters, the corresponding plane curve is constructed. The surgery
coefficients are also considered. Such presentations support us to study each
knot itself, and the relationship among the knots in the set of lens space
surgeries.Comment: 26 pages, 19 figures. The proofs of Theorem 1.3 and Lemma 3.5 are
written down by braid calculus. Section 4 (on the operation Adding squares)
is revised and improved the most. Section 5 is adde
Terahertz Magneto Optical Polarization Modulation Spectroscopy
We report the development of new terahertz techniques for rapidly measuring
the complex Faraday angle in systems with broken time-reversal symmetry using
the cyclotron resonance of a GaAs two-dimensional electron gas in a magnetic
field as a system for demonstration of performance. We have made polarization
modulation, high sensitivity (< 1 mrad) narrow band rotation measurements with
a CW optically pumped molecular gas laser, and by combining the distinct
advantages of terahertz (THz) time domain spectroscopy and polarization
modulation techniques, we have demonstrated rapid broadband rotation
measurements to < 5 mrad precision.Comment: 25 pages including 7 figures, introduces use of rotating polarizer
with THz TDS for Complex Faraday Angle determinatio
Terahertz dynamics of a topologically protected state: quantum Hall effect plateaus near cyclotron resonance in a GaAs/AlGaAs heterojunction
We measure the Hall conductivity of a two-dimensional electron gas formed at
a GaAs/AlGaAs heterojunction in the terahertz regime close to the cyclotron
resonance frequency by employing a highly sensitive Faraday rotation method
coupled with electrical gating of the sample to change the electron density. We
observe clear plateau-and step-like features in the Faraday rotation angle vs.
electron density and magnetic field (Landau-level filling factor), which are
the high frequency manifestation of quantum Hall plateaus - a signature of
topologically protected edge states. The results are compared to a recent
dynamical scaling theory.Comment: 18 pages, 3 figure
Lipschitz shadowing implies structural stability
We show that the Lipschitz shadowing property of a diffeomorphism is
equivalent to structural stability. As a corollary, we show that an expansive
diffeomorphism having the Lipschitz shadowing property is Anosov.Comment: 11 page
Influence of Magnetic Moment Formation on the Conductance of Coupled Quantum Wires
In this report, we develop a model for the resonant interaction between a
pair of coupled quantum wires, under conditions where self-consistent effects
lead to the formation of a local magnetic moment in one of the wires. Our
analysis is motivated by the experimental results of Morimoto et al. [Appl.
Phys. Lett. \bf{82}, 3952 (2003)], who showed that the conductance of one of
the quantum wires exhibits a resonant peak at low temperatures, whenever the
other wire is swept into the regime where local-moment formation is expected.
In order to account for these observations, we develop a theoretical model for
the inter-wire interaction that calculated the transmission properties of one
(the fixed) wire when the device potential is modified by the presence of an
extra scattering term, arising from the presence of the local moment in the
swept wire. To determine the transmission coefficients in this system, we
derive equations describing the dynamics of electrons in the swept and fixed
wires of the coupled-wire geometry. Our analysis clearly shows that the
observation of a resonant peak in the conductance of the fixed wire is
correlated to the appearance of additional structure (near or
) in the conductance of the swept wire, in agreement with the
experimental results of Morimoto et al
A low-cost head and eye tracking system for realistic eye movements in virtual avatars
A virtual avatar or autonomous agent is a digital representation of a human being that can be controlled by either a human or an artificially intelligent computer system. Increasingly avatars are becoming realistic virtual human characters that exhibit human behavioral traits, body language and eye and head movements. As the interpretation of eye and head movements represents an important part of nonverbal human communication it is extremely important to accurately reproduce these movements in virtual avatars to avoid falling into the well-known ``uncanny valley''. In this paper we present a cheap hybrid real-time head and eye tracking system based on existing open source software and commonly available hardware. Our evaluation indicates that the system of head and eye tracking is stable and accurate and can allow a human user to robustly puppet a virtual avatar, potentially allowing us to train an A.I. system to learn realistic human head and eye movements
- …
