115,617 research outputs found
Stochastic Data Clustering
In 1961 Herbert Simon and Albert Ando published the theory behind the
long-term behavior of a dynamical system that can be described by a nearly
uncoupled matrix. Over the past fifty years this theory has been used in a
variety of contexts, including queueing theory, brain organization, and
ecology. In all these applications, the structure of the system is known and
the point of interest is the various stages the system passes through on its
way to some long-term equilibrium.
This paper looks at this problem from the other direction. That is, we
develop a technique for using the evolution of the system to tell us about its
initial structure, and we use this technique to develop a new algorithm for
data clustering.Comment: 23 page
The condition of a finite Markov chain and perturbation bounds for the limiting probabilities
The inequalities bounding the relative error the norm of w- w squiggly/the norm of w are exhibited by a very simple function of E and A. Let T denote the transition matrix of an ergodic chain, C, and let A = I - T. Let E be a perturbation matrix such that T squiggly = T - E is also the transition matrix of an ergodic chain, C squiggly. Let w and w squiggly denote the limiting probability (row) vectors for C and C squiggly. The inequality is the best one possible. This bound can be significant in the numerical determination of the limiting probabilities for an ergodic chain. In addition to presenting a sharp bound for the norm of w-w squiggly/the norm of w an explicit expression for w squiggly will be derived in which w squiggly is given as a function of E, A, w and some other related terms
Vibrational density of states of silicon nanoparticles
The vibrational density of states of silicon nanoparticles in the range from
2.3 to 10.3 nm is studied with the help of molecular-dynamics simulations. From
these simulations the vibrational density of states and frequencies of
bulk-like vibrational modes at high-symmetry points of the Brillouin-zone have
been derived. The results show an increase of the density of states at low
frequencies and a transfer of modes from the high-frequency end of the spectrum
to the intermediate range. At the same time the peak of transverse optical
modes is shifted to higher frequencies. These observations are in line with
previous simulation studies of metallic nanoparticles and they provide an
explanation for a previously observed discrepancy between experimental and
theoretical data [C. Meier et al., Physica E, 32, 155 (2006)].Comment: 7 pages, 5 figure; accepted for publication in Phys. Rev.
Phase diagram and dynamic response functions of the Holstein-Hubbard model
We present the phase diagram and dynamical correlation functions for the
Holstein-Hubbard model at half filling and at zero temperature. The
calculations are based on the Dynamical Mean Field Theory. The effective
impurity model is solved using Exact Diagonalization and the Numerical
Renormalization Group. Excluding long-range order, we find three different
paramagnetic phases, metallic, bipolaronic and Mott insulating, depending on
the Hubbard interaction U and the electron-phonon coupling g. We present the
behaviour of the one-electron spectral functions and phonon spectra close to
the metal insulator transitions.Comment: contribution to the SCES04 conferenc
Cross Calibration of Imaging Air Cherenkov Telescopes with Fermi
An updated model for the synchrotron and inverse Compton emission from a
population of high energy electrons of the Crab Nebula is used to reproduce the
measured spectral energy distribution from radio to high energy gamma-rays. By
comparing the predicted inverse Compton component with recent Fermi
measurements of the nebula's emission, it is possible to determine the average
magnetic field in the nebula and to derive the underlying electron energy
distribution. The model calculation can then be used to cross calibrate the
Fermi observations with ground based air shower measurements. The resulting
energy calibration factors are derived and can be used for combining broad
energy measurements taken with Fermi in conjunction with ground based
measurements.Comment: 2009 Fermi Symposium, eConf Proceedings C091122, 5 pages, 5 figures,
3 table
- …
