405 research outputs found
Biaxial fragmentation of thin silicon oxide coatings on poly(ethylene terephthalate)
Crack patterns of 53 nm and 103 nm thick silicon oxide coatings on poly(ethylene terephthalate) films are analyzed under equibiaxial stress loading, by means of a bulging cell mounted under an optical microscope with stepwise pressurization of film specimens. The biaxial stress and strain are modeled from classical elastic membrane equations, and an excellent agreement is obtained with a finite element method. In the large pressure range, the derivation of the biaxial strain from force equilibrium considerations are found to reproduce accurately the measured data up to 25% strain. The examination of the fragmentation process of the coating under increasing pressure levels reveals that the crack onset strain of the oxide coating is similar to that measured under uniaxial tension. The fragmentation of the coating under biaxial tension is also characterized by complex dynamic phenomena which image the peculiarities of the stress field, resulting in considerable broadening of the fragment size distribution. The evolution of the average fragment area as a function of biaxial stress in the early stages of the fragmentation process is analyzed using Weibull statistics to describe the coating strengt
Dzyaloshinsky-Moriya interaction in vesignieite: A route to freezing in a quantum kagome antiferromagnet
We report an electron spin resonance investigation of the geometrically
frustrated spin-1/2 kagome antiferromagnet vesignieite,
BaCuVO(OH). Analysis of the line widths and line shifts
indicates the dominance of in-plane Dzyaloshinsky-Moriya anisotropy that is
proposed to suppress strongly quantum spin fluctuations and thus to promote
long-range ordering rather than a spin-liquid state. We also evidence an
enhanced spin-phonon contribution that might originate from a lattice
instability and discuss the origin of a low-temperature mismatch between
intrinsic and bulk susceptibility in terms of local inhomogeneity
Intrinsic susceptibility and bond defects in the novel 2D frustrated antiferromagnet BaSnZnCrGaO
We present microscopic and macroscopic magnetic properties of the highly
frustrated antiferromagnet BaSnZnCrGaO,
respectively probed with NMR and SQUID experiments. The -variation of the
intrinsic susceptibility of the Cr frustrated kagom\'{e} bilayer,
, displays a maximum around 45 K. The dilution of the magnetic
lattice has been studied in detail for . Novel dilution
independent defects, likely related with magnetic bond disorder, are evidenced
and discussed. We compare our results to SrCrGaO. Both
bond defects and spin vacancies do not affect the average susceptibility of the
kagom\'{e} bilayers.Comment: Published in Phys. Rev. Lett. 92, 217202 (2004). Only minor changes
as compared to previous version. 4 pages, 4 figure
Ground state of the Kagome-like S=1/2 antiferromagnet, Volborthite Cu3V2O7(OH)2.2H2O
Volborthite compound is one of the very few realizations of S=1/2 quantum
spins on a highly frustrated kagome-like lattice. Low-T SQUID measurements
reveal a broad magnetic transition below 2K which is further confirmed by a
peak in the 51V nuclear spin relaxation rate (1/T1) at 1.4K0.2K. Through
51V NMR, the ground state (GS) appears to be a mixture of different spin
configurations, among which 20% correspond to a well defined short range order,
possibly of the type. While the freezing involve all
the Cu spins, only 40% of the copper moment is actually frozen which
suggests that quantum fluctuations strongly renormalize the GS.Comment: 4 pages, 4 figures, to appear in PR
Effects of dilute Zn impurities on the uniform magnetic susceptibility of YBa2Cu3O{7-delta}
The effects of dilute Zn impurities on the uniform magnetic susceptibility
are calculated in the normal metallic state for a model of the spin
fluctuations of the layered cuprates. It is shown that scatterings from
extended impurity potentials can lead to a coupling of the q~(pi,pi) and the
q~0 components of the magnetic susceptibility chi(q). Within the presence of
antiferromagnetic correlations, this coupling can enhance the uniform
susceptibility. The implications of this result for the experimental data on Zn
substituted YBa2Cu3O{7-delta} are discussed.Comment: 4 pages, 4 figure
Specific Heat of Zn-Doped YBa_{2}Cu_3O_{6.95}: Possible Evidence for Kondo Screening in the Superconducting State
The magnetic field dependence of the specific heat of Zn-doped single
crystals of YBa_{2}Cu_3O_{6.95} was measured between 2 and 10 K and up to 8
Tesla. Doping levels of 0, 0.15%, 0.31%, and 1% were studied and compared. In
particular we searched for the Schottky anomaly associated with the Zn-induced
magnetic moments.Comment: 5 pages, 6 figure
Spinless impurities in high Tc cuprates: Kondo-like behavior
We compare the effects of in-plane non magnetic Li and Zn
impurities on the normal state of high-T cuprates. Y NMR shows that the
extra hole introduced by Li is not localized in its vicinity. The Tc depression
and induced moments on near neighbour Cu sites of Zn or Li are found identical.
These universal effects of spinless impurities establish the major influence of
the spin perturbation with respect to the charge defect. The susceptibility of
the induced moment measured by Li NMR displays a 1/(T+Theta) behavior. Theta
increases with doping up to about 200 K in the overdoped regime. We attribute
this to a "Kondo like" effect.Comment: To appear in Phys.Rev.Lett. (22 nov. 99) Minor modifications compared
to previous version. 8 pages (4 pages for text + 4 figures
Relativistic phase space: dimensional recurrences
We derive recurrence relations between phase space expressions in different
dimensions by confining some of the coordinates to tori or spheres of radius
and taking the limit as . These relations take the form of
mass integrals, associated with extraneous momenta (relative to the lower
dimension), and produce the result in the higher dimension.Comment: 13 pages, Latex, to appear in J Phys
Quenched crystal field disorder and magnetic liquid ground states in Tb2Sn2-xTixO7
Solid-solutions of the "soft" quantum spin ice pyrochlore magnets Tb2B2O7
with B=Ti and Sn display a novel magnetic ground state in the presence of
strong B-site disorder, characterized by a low susceptibility and strong spin
fluctuations to temperatures below 0.1 K. These materials have been studied
using ac-susceptibility and muSR techniques to very low temperatures, and
time-of-flight inelastic neutron scattering techniques to 1.5 K. Remarkably,
neutron spectroscopy of the Tb3+ crystal field levels appropriate to at high
B-site mixing (0.5 < x < 1.5 in Tb2Sn2-xTixO7) reveal that the doublet ground
and first excited states present as continua in energy, while transitions to
singlet excited states at higher energies simply interpolate between those of
the end members of the solid solution. The resulting ground state suggests an
extreme version of a random-anisotropy magnet, with many local moments and
anisotropies, depending on the precise local configuration of the six B sites
neighboring each magnetic Tb3+ ion.Comment: 6 pages, 6 figure
- …
