31,725 research outputs found
Adhesion between atomically pure metallic surfaces Final report
Metallic adhesion from compression loads resulting in plastic deformatio
Adhesion between atomically pure metallic surfaces, part 4 Semiannual report
Adhesion between atomically pure metal surface
Adhesion between automatically pure metallic surfaces, part 4 Semiannual report
Contact resistance measurements to determine adhesion between atomically pure metallic surface
Improved Spin Dynamics Simulations of Magnetic Excitations
Using Suzuki-Trotter decompositions of exponential operators we describe new
algorithms for the numerical integration of the equations of motion for
classical spin systems. These techniques conserve spin length exactly and, in
special cases, also conserve the energy and maintain time reversibility. We
investigate integration schemes of up to eighth order and show that these new
algorithms can be used with much larger time steps than a well established
predictor-corrector method. These methods may lead to a substantial speedup of
spin dynamics simulations, however, the choice of which order method to use is
not always straightforward.Comment: J. Mod. Phys. C (in press
Techniques for the Synthesis of Reversible Toffoli Networks
This paper presents novel techniques for the synthesis of reversible networks
of Toffoli gates, as well as improvements to previous methods. Gate count and
technology oriented cost metrics are used. Our synthesis techniques are
independent of the cost metrics. Two new iterative synthesis procedure
employing Reed-Muller spectra are introduced and shown to complement earlier
synthesis approaches. The template simplification suggested in earlier work is
enhanced through introduction of a faster and more efficient template
application algorithm, updated (shorter) classification of the templates, and
presentation of the new templates of sizes 7 and 9. A novel ``resynthesis''
approach is introduced wherein a sequence of gates is chosen from a network,
and the reversible specification it realizes is resynthesized as an independent
problem in hopes of reducing the network cost. Empirical results are presented
to show that the methods are effective both in terms of the realization of all
3x3 reversible functions and larger reversible benchmark specifications.Comment: 20 pages, 5 figure
Power-dependent internal loss in Josephson bifurcation amplifiers
We have studied nonlinear superconducting resonators: lambda/2
coplanar-waveguide (CPW) resonators with Josephson junctions (JJs) placed in
the middle and lambda/4 CPW resonators terminated by JJs, which can be used for
the qubit readout as "bifurcation amplifiers." The nonlinearity of the
resonators arises from the Josephson junctions, and because of the
nonlinearity, the resonators with appropriate parameters are expected to show a
hysteretic response to the frequency sweep, or "bifurcation," when they are
driven with a sufficiently large power. We designed and fabricated resonators
whose resonant frequencies were around 10 GHz. We characterized the resonators
at low temperatures, T<0.05 K, and confirmed that they indeed exhibited
hysteresis. The sizes of the hysteresis, however, are sometimes considerably
smaller than the predictions based on the loaded quality factor in the weak
drive regime. When the discrepancy appears, it is mostly explained by taking
into account the internal loss, which often increases in our resonators with
increasing drive power in the relevant power range. As a possible origin of the
power-dependent loss, the quasiparticle channel of conductance of the JJs is
discussed.Comment: 8 pages, 9 figure
TagF-mediated repression of bacterial type VI secretion systems involves a direct interaction with the cytoplasmic protein Fha
The bacterial type VI secretion system (T6SS) delivers effectors into eukaryotic host cells or toxins into bacterial competitor for survival and fitness. The T6SS is positively regulated by the threonine phosphorylation pathway (TPP) and negatively by the T6SS-accessory protein TagF. Here, we studied the mechanisms underlying TagF-mediated T6SS repression in two distinct bacterial pathogens, Agrobacterium tumefaciens and Pseudomonas aeruginosa. We found that in A. tumefaciens, T6SS toxin secretion and T6SS-dependent antibacterial activity are suppressed by a two-domain chimeric protein consisting of TagF and PppA, a putative phosphatase. Remarkably, this TagF domain is sufficient to post-translationally repress the T6SS, and this inhibition is independent of TPP. This repression requires interaction with a cytoplasmic protein, Fha, critical for activating T6SS assembly. In P. aeruginosa, PppA and TagF are two distinct proteins that repress T6SS in a TPP-dependent and -independent pathways, respectively. P. aeruginosa TagF interacts with Fha1, suggesting that formation of this complex represents a conserved TagF-mediated regulatory mechanism. Using TagF variants with substitutions of conserved amino acid residues at predicted protein-protein interaction interfaces, we uncovered evidence that the TagF-Fha interaction is critical for TagF-mediated T6SS repression in both bacteria. TagF inhibits T6SS without affecting T6SS protein abundance in A. tumefaciens, but TagF overexpression reduces the protein levels of all analyzed T6SS components in P. aeruginosa. Our results indicate that TagF interacts with Fha, which in turn could impact different stages of T6SS assembly in different bacteria, possibly reflecting an evolutionary divergence in T6SS control
Dynamical Properties of a Growing Surface on a Random Substrate
The dynamics of the discrete Gaussian model for the surface of a crystal
deposited on a disordered substrate is investigated by Monte Carlo simulations.
The mobility of the growing surface was studied as a function of a small
driving force and temperature . A continuous transition is found from
high-temperature phase characterized by linear response to a low-temperature
phase with nonlinear, temperature dependent response. In the simulated regime
of driving force the numerical results are in general agreement with recent
dynamic renormalization group predictions.Comment: 10 pages, latex, 3 figures, to appear in Phys. Rev. E (RC
b-quark decay in the collinear approximation
The semileptonic decay of a b-quark, b--> c l nu, is considered in the
relativistic limit where the decay products are approximately collinear.
Analytic results for the double differential lepton energy distributions are
given for finite charm-quark mass. Their use for the fast simulation of
isolated lepton backgrounds from heavy quark decays is discussed.Comment: 7 pages, 1 figure, submitted to Phys.Rev.
- …