1,932 research outputs found

    On the static Lovelock black holes

    Full text link
    We consider static spherically symmetric Lovelock black holes and generalize the dimensionally continued black holes in such a way that they asymptotically for large r go over to the d-dimensional Schwarzschild black hole in dS/AdS spacetime. This means that the master algebraic polynomial is not degenerate but instead its derivative is degenerate. This family of solutions contains an interesting class of pure Lovelock black holes which are the Nth order Lovelock {\Lambda}-vacuum solu- tions having the remarkable property that their thermodynamical parameters have the universal character in terms of the event horizon radius. This is in fact a characterizing property of pure Lovelock theories. We also demonstrate the universality of the asymptotic Einstein limit for the Lovelock black holes in general.Comment: 19 page

    Galactic Potentials

    Get PDF
    The information contained in galactic rotation curves is examined under a minimal set of assumptions. If emission occurs from stable circular geodesic orbits of a static spherically symmetric field, with information propagated to us along null geodesics, observed rotation curves determine galactic potentials without specific reference to any metric theory of gravity. Given the potential, the gravitational mass can be obtained by way of an anisotropy function of this field. The gravitational mass and anisotropy function can be solved for simultaneously in a Newtonian limit without specifying any specific source. This procedure, based on a minimal set of assumptions, puts very strong constraints on any model of the "dark matter".Comment: A somewhat longer form of the final version to appear in Physical Review Letters.Clarification and further reference

    Charged gravitational instantons in five-dimensional Einstein-Gauss-Bonnet-Maxwell theory

    Get PDF
    We study a solution of the Einstein-Gauus-Bonnet theory in 5 dimensions coupled to a Maxwell field, whose euclidean continuation gives rise to an instanton describing black hole pair production. We also discuss the dual theory with a 3-form field coupled to gravity.Comment: 8 pages, plain Te

    Some aspects of field equations in generalised theories of gravity

    Full text link
    A class of theories of gravity based on a Lagrangian which depends on the curvature and metric - but not on the derivatives of the curvature tensor - is of interest in several contexts including in the development of the paradigm that treats gravity as an emergent phenomenon. This class of models contains, as an important subset, all Lanczos-Lovelock models of gravity. I derive several identities and properties which are useful in the study of these models and clarify some of the issues that seem to have received insufficient attention in the past literature.Comment: latex; 11 pages; no figures; ver 2: references added; to appear in Phys. Rev.

    Gauss-Bonnet lagrangian G ln G and cosmological exact solutions

    Full text link
    For the lagrangian L = G ln G where G is the Gauss-Bonnet curvature scalar we deduce the field equation and solve it in closed form for 3-flat Friedman models using a statefinder parametrization. Further we show, that among all lagrangians F(G) this L is the only one not having the form G^r with a real constant r but possessing a scale-invariant field equation. This turns out to be one of its analogies to f(R)-theories in 2-dimensional space-time. In the appendix, we systematically list several formulas for the decomposition of the Riemann tensor in arbitrary dimensions n, which are applied in the main deduction for n=4.Comment: 18 pages, amended version, accepted by Phys. Rev.

    The Lanczos potential for Weyl-candidate tensors exists only in four dimensions

    Get PDF
    We prove that a Lanczos potential L_abc for the Weyl candidate tensor W_abcd does not generally exist for dimensions higher than four. The technique is simply to assume the existence of such a potential in dimension n, and then check the integrability conditions for the assumed system of differential equations; if the integrability conditions yield another non-trivial differential system for L_abc and W_abcd, then this system's integrability conditions should be checked; and so on. When we find a non-trivial condition involving only W_abcd and its derivatives, then clearly Weyl candidate tensors failing to satisfy that condition cannot be written in terms of a Lanczos potential L_abc.Comment: 11 pages, LaTeX, Heavily revised April 200

    Black Hole Entropy and the Dimensional Continuation of the Gauss-Bonnet Theorem

    Full text link
    The Euclidean black hole has topology ℜ2×Sd−2\Re^2 \times {\cal S}^{d-2}. It is shown that -in Einstein's theory- the deficit angle of a cusp at any point in ℜ2\Re^2 and the area of the Sd−2{\cal S}^{d-2} are canonical conjugates. The black hole entropy emerges as the Euler class of a small disk centered at the horizon multiplied by the area of the Sd−2{\cal S}^{d-2} there.These results are obtained through dimensional continuation of the Gauss-Bonnet theorem. The extension to the most general action yielding second order field equations for the metric in any spacetime dimension is given.Comment: 7 pages, RevTe

    Five-Dimensional Eguchi-Hanson Solitons in Einstein-Gauss-Bonnet Gravity

    Full text link
    Eguchi-Hanson solitons are odd-dimensional generalizations of the four-dimensional Eguchi-Hanson metric and are asymptotic to AdS5_5\mathbb{Z}_p$ when the cosmological constant is either positive or negative. We find soliton solutions to Lovelock gravity in 5 dimensions that are generalizations of these objects.Comment: 26 pages, 11 figure

    Gravitational dynamics for all tensorial spacetimes carrying predictive, interpretable and quantizable matter

    Full text link
    Only a severely restricted class of tensor fields can provide classical spacetime geometries, namely those that can carry matter field equations that are predictive, interpretable and quantizable. These three conditions on matter translate into three corresponding algebraic conditions on the underlying tensorial geometry, namely to be hyperbolic, time-orientable and energy-distinguishing. Lorentzian metrics, on which general relativity and the standard model of particle physics are built, present just the simplest tensorial spacetime geometry satisfying these conditions. The problem of finding gravitational dynamics---for the general tensorial spacetime geometries satisfying the above minimum requirements---is reformulated in this paper as a system of linear partial differential equations, in the sense that their solutions yield the actions governing the corresponding spacetime geometry. Thus the search for modified gravitational dynamics is reduced to a clear mathematical task.Comment: 47 pages, no figures, minor update
    • 

    corecore