411 research outputs found
Active control of laminar-turbulent transition
Instability waves, commonly called T-S waves, can be introduced in a laminar boundary layer by periodic heating of flush-mounted heating elements. Experiments have demonstrated that nearly complete cancellation of a T-S wave excited in this way can be achieved by using a second downstream heating element with a suitable phase shift. As one application of the technique, a single element together with a feedback loop activated by measured wall shear stress has been used to reduce the amplitude of naturally occurring laminar instability waves. A significant increase in the transition Reynolds number has been achieved
Control of laminar-instability waves using a new technique
A new technique using surface-film activators has been developed to induce and control laminar-instability waves by periodic heating. A flat plate was instrumented
and installed in the GALCIT High-speed Water Tunnel with flush-mounted surface heaters and probes. Extremely two-dimensional naturally occurring Tolmien-Schlichting (TS) waves were observed along with the subsequent formation of turbulent spots. Laminar-instability waves were then excited in a controlled fashion using the surface-mounted heaters. A preliminary experiment on cancellation of
excited laminar-instability waves was carried out. Finally, turbulent spots were produced using amplitude-modulated bursts to form Gaussian TS wave packets.
Flow visualization, along with wall shear measurements, was used to infer the velocity and vorticity field near the wall
The Effect of the Free Surface on a Round Jet
The images shown above are sequential cross sections of
a round jet at 3.5 diameters downstream of the nozzle visualized
using laser-induced fluorescence. Figures 1 and 2 show
the flow field of the jet 1 diameter below the free surface,
while Figs. 3 and 4 are images of the submerged jet. Except
for the presence of the free surface, the flow conditions are
identical with a Reynolds number of 4000 based on the jet
diameter and exit velocity
Shock Tubes in Rarefied Gas Flow Research
The flow within a shock wave is governed by the relaxation times of the molecular degrees of freedom.
Advances in shock-tube design and instrumentation in recent years have made it possible to resolve all the
relaxation times including the shortest, corresponding to the translational degrees of freedom. The shock
tube thus becomes an important tool for critical experiments in the study of the range of applicability of
the Navier-Stokes equations and similar approximations and of the character of solutions of the Boltzmann
equation. Significant progress has recently been made in the understanding of the most obvious such problem,
the flow within a shock in a monatomic gas. Theory and experiment are now in substantial agreement and
the over-all process of energy exchange is understood. Progress has been made in problems connected with
shock wave reflection from real walls, but a host of others remain to be studied including surface interaction
effects. The extension of this type of shock-tube research to more complicated systems, reacting gases, gas
mixtures, and the like has begun and some progress can be reported. Recent experimental progress is illustrated
by a number of measurements made in the 6- and 17-in. shock tubes at the California Institute of
Technology
Control and ultrasonic actuation of a gas-liquid interface in a microfluidic chip
This article describes the design and manufacturing of a microfluidic chip,
allowing for the actuation of a gas-liquid interface and of the neighboring
fluid. A first way to control the interface motion is to apply a pressure
difference across it. In this case, the efficiency of three different
micro-geometries at anchoring the interface is compared. Also, the critical
pressures needed to move the interface are measured and compared to theoretical
result. A second way to control the interface motion is by ultrasonic
excitation. When the excitation is weak, the interface exhibits traveling
waves, which follow a dispersion equation. At stronger ultrasonic levels,
standing waves appear on the interface, with frequencies that are half integer
multiple of the excitation frequency. An associated microstreaming flow field
observed in the vicinity of the interface is characterized. The meniscus and
associated streaming flow have the potential to transport particles and mix
reagents
Causal Relativistic Fluid Dynamics
We derive causal relativistic fluid dynamical equations from the relaxation
model of kinetic theory as in a procedure previously applied in the case of
non-relativistic rarefied gases. By treating space and time on an equal footing
and avoiding the iterative steps of the conventional Chapman-Enskog ---
CE---method, we are able to derive causal equations in the first order of the
expansion in terms of the mean flight time of the particles. This is in
contrast to what is found using the CE approach. We illustrate the general
results with the example of a gas of identical ultrarelativistic particles such
as photons under the assumptions of homogeneity and isotropy. When we couple
the fluid dynamical equations to Einstein's equation we find, in addition to
the geometry-driven expanding solution of the FRW model, a second,
matter-driven nonequilibrium solution to the equations. In only the second
solution, entropy is produced at a significant rate.Comment: 23 pages (CQG, in press
Thermal receptivity of free convective flow from a heated vertical surface: linear waves
Numerical techniques are used to study the receptivity to small-amplitude thermal disturbances of the boundary layer flow of air which is induced by a heated vertical flat plate. The fully elliptic nonlinear, time-dependent Navier–Stokes and energy equations are first solved to determine the steady state boundary-layer flow, while a linearised version of the same code is used to determine the stability characteristics. In particular we investigate (i) the ultimate fate of a localised thermal disturbance placed in the region near the leading edge and (ii) the effect of small-scale surface temperature oscillations as means of understanding the stability characteristics of the boundary layer. We show that there is a favoured frequency of excitation for the time-periodic disturbance which maximises the local response in terms of the local rate of heat transfer. However the magnitude of the favoured frequency depends on precisely how far from the leading edge the local response is measured. We also find that the instability is advective in nature and that the response of the boundary layer consists of a starting transient which eventually leaves the computational domain, leaving behind the large-time time-periodic asymptotic state. Our detailed numerical results are compared with those obtained using parallel flow theory
On Dispersive and Classical Shock Waves in Bose-Einstein Condensates and Gas Dynamics
A Bose-Einstein condensate (BEC) is a quantum fluid that gives rise to
interesting shock wave nonlinear dynamics. Experiments depict a BEC that
exhibits behavior similar to that of a shock wave in a compressible gas, eg.
traveling fronts with steep gradients. However, the governing Gross-Pitaevskii
(GP) equation that describes the mean field of a BEC admits no dissipation
hence classical dissipative shock solutions do not explain the phenomena.
Instead, wave dynamics with small dispersion is considered and it is shown that
this provides a mechanism for the generation of a dispersive shock wave (DSW).
Computations with the GP equation are compared to experiment with excellent
agreement. A comparison between a canonical 1D dissipative and dispersive shock
problem shows significant differences in shock structure and shock front speed.
Numerical results associated with the three dimensional experiment show that
three and two dimensional approximations are in excellent agreement and one
dimensional approximations are in good qualitative agreement. Using one
dimensional DSW theory it is argued that the experimentally observed blast
waves may be viewed as dispersive shock waves.Comment: 24 pages, 28 figures, submitted to Phys Rev
- …