8,677 research outputs found

    Effect of mean on variance function estimation in nonparametric regression

    Get PDF
    Variance function estimation in nonparametric regression is considered and the minimax rate of convergence is derived. We are particularly interested in the effect of the unknown mean on the estimation of the variance function. Our results indicate that, contrary to the common practice, it is not desirable to base the estimator of the variance function on the residuals from an optimal estimator of the mean when the mean function is not smooth. Instead it is more desirable to use estimators of the mean with minimal bias. On the other hand, when the mean function is very smooth, our numerical results show that the residual-based method performs better, but not substantial better than the first-order-difference-based estimator. In addition our asymptotic results also correct the optimal rate claimed in Hall and Carroll [J. Roy. Statist. Soc. Ser. B 51 (1989) 3--14].Comment: Published in at http://dx.doi.org/10.1214/009053607000000901 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    High-energy behavior of the nuclear symmetry potential in asymmetric nuclear matter

    Full text link
    Using the relativistic impulse approximation with empirical NN scattering amplitude and the nuclear scalar and vector densities from the relativistic mean-field theory, we evaluate the Dirac optical potential for neutrons and protons in asymmetric nuclear matter. From the resulting Schr\"{o}% dinger-equivalent potential, the high energy behavior of the nuclear symmetry potential is studied. We find that the symmetry potential at fixed baryon density is essentially constant once the nucleon kinetic energy is greater than about 500 MeV. Moreover, for such high energy nucleon, the symmetry potential is slightly negative below a baryon density of about % \rho =0.22 fm3^{-3} and then increases almost linearly to positive values at high densities. Our results thus provide an important constraint on the energy and density dependence of nuclear symmetry potential in asymmetric nuclear matter.Comment: 6 pages, 5 figures, revised version, to appear in PR

    Intersubband transitions in pseudomorphic InGaAs/GaAs/AlGaAs multiple step quantum wells

    Get PDF
    Intersubband transitions from the ground state to the first and second excited states in pseudomorphic AlGaAs/InGaAs/GaAs/AlGaAs multiple step quantum wells have been observed. The step well structure has a configuration of two AlGaAs barriers confining an InGaAs/GaAs step. Multiple step wells were grown on GaAs substrate with each InGaAs layer compressively strained. During the growth, a uniform growth condition was adopted so that inconvenient long growth interruptions and fast temperature ramps when switching the materials were eliminated. The sample was examined by cross‐sectional transmission electron microscopy, an x‐ray rocking curve technique, and the results show good crystal quality using this simple growth method. Theoretical calculations were performed to fit the intersubband absorption spectrum. The calculated energies are in good agreement with the observed peak positions for both the 1→2 and 1→3 transitions

    SiGeC alloy layer formation by high-dose C + implantations into pseudomorphic metastable Ge0.08Si0.92 on Si(100)

    Get PDF
    Dual-energy carbon implantation (1 × 1016/cm2 at 150 and at 220 keV) was performed on 260-nm-thick undoped metastable pseudomorphic Si(100)/ Ge0.08Si0.92 with a 450-nm-thick SiO2 capping layer, at either room temperature or at 100 °C. After removal of the SiO2 the samples were measured using backscattering/channeling spectrometry and double-crystal x-ray diffractometry. A 150-nm-thick amorphous layer was observed in the room temperature implanted samples. This layer was found to have regrown epitaxially after sequential annealing at 550 °C for 2 h plus at 700 °C for 30 min. Following this anneal, tensile strain, believed to result from a large fraction of substitutional carbon in the regrown layer, was observed. Compressive strain, that presumably arises from the damaged but nonamorphized portion of the GeSi layer, was also observed. This strain was not significantly affected by the annealing treatment. For the samples implanted at 100 °C, in which case no amorphous layer was produced, only compressive strain was observed. For samples implanted at both room temperature and 100 °C, the channelled backscattering yield from the Si substrate was the same as that of the virgin sample

    Determination of the stiffness of the nuclear symmetry energy from isospin diffusion

    Get PDF
    With an isospin- and momentum-dependent transport model, we find that the degree of isospin diffusion in heavy ion collisions at intermediate energies is affected by both the stiffness of the nuclear symmetry energy and the momentum dependence of the nucleon potential. Using a momentum dependence derived from the Gogny effective interaction, recent experimental data from NSCL/MSU on isospin diffusion are shown to be consistent with a nuclear symmetry energy given by Esym(ρ)31.6(ρ/ρ0)1.05E_{\text{sym}}(\rho)\approx 31.6(\rho /\rho_{0})^{1.05} at subnormal densities. This leads to a significantly constrained value of about -550 MeV for the isospin-dependent part of the isobaric incompressibility of isospin asymmetric nuclear matter.Comment: 4 pages, 4 figures, 1 table, revised version, to appear in PR

    Mean free paths and in-medium scattering cross sections of energetic nucleons in neutron-rich nucleonic matter within the relativistic impulse approximation

    Full text link
    The mean free paths and in-medium scattering cross sections of energetic nucleons in neutron-rich nucleonic matter are investigated using the nucleon optical potential obtained within the relativistic impulse approximation with the empirical nucleon-nucleon scattering amplitudes and the nuclear densities obtained in the relativistic mean field model. It is found that the isospin-splitting of nucleon mean free paths, sensitive to the imaginary part of the symmetry potential, changes its sign at certain high kinetic energy. The in-medium nucleon-nucleon cross sections are analytically and numerically demonstrated to be essentially independent of the isospin asymmetry of the medium and increase linearly with density in the high energy region where the relativistic impulse approximation is applicable.Comment: 13 pages, 6 figure

    Constraining the Skyrme effective interactions and the neutron skin thickness of nuclei using isospin diffusion data from heavy ion collisions

    Get PDF
    Recent analysis of the isospin diffusion data from heavy-ion collisions based on an isospin- and momentum-dependent transport model with in-medium nucleon-nucleon cross sections has led to the extraction of a value of L=88±25L=88\pm 25 MeV for the slope of the nuclear symmetry energy at saturation density. This imposes stringent constraints on both the parameters in the Skyrme effective interactions and the neutron skin thickness of heavy nuclei. Among the 21 sets of Skyrme interactions commonly used in nuclear structure studies, the 4 sets SIV, SV, Gσ_\sigma, and Rσ_\sigma are found to give LL values that are consistent with the extracted one. Further study on the correlations between the thickness of the neutron skin in finite nuclei and the nuclear matter symmetry energy in the Skyrme Hartree-Fock approach leads to predicted thickness of the neutron skin of 0.22±0.040.22\pm 0.04 fm for 208^{208}Pb, 0.29±0.040.29\pm 0.04 fm for 132^{132}Sn, and 0.22±0.040.22\pm 0.04 fm for 124^{124}Sn.Comment: 10 pages, 4 figures, 1 Table, Talk given at 1) International Conference on Nuclear Structure Physics, Shanghai, 12-17 June, 2006; 2) 11th China National Nuclear Structure Physics Conference, Changchun, Jilin, 13-18 July, 200

    Perancangan Sistem Pemompaan Bertenaga Angin Untuk Aplikasi Pembangkit Listrik Mikrohidro Pada Gedung Bertingkat

    Full text link
    Peningkatan kebutuhan akan penggunaan energi di gedung tinggi menyebabkan peningkatan permintaan akan energi listrik dari sumber bahan bakar fosil. Gedung-gedung perlu memiliki alternatif untuk memenuhi kebutuhan energinya secara mandiri dari sumber energi yang bersih dan berkelanjutan. Tugas Akhir ini bertujuan untuk mendesain mekanisme dan spesifikasi sistem pemompaan dengan tenaga angin untuk mengkonversi energi angin ke energi potensial berupa penyimpanan air di ketinggian gedung. Energi potensial ini akan dikonversikan kembali menjadi energi listrik oleh sistem mikrohidro. Komponen sistem terdiri atas tangki penampungan air atas dan bawah,sistem mikrohidro, pompa piston, rangkaian gearbox, sistem perpipaan dan turbin angin jenis Savonius. Dengan target desain daya listrik 5 kW, sistem ini dirancang untuk beroperasi di gedung P1 dan P2 UK Petra setinggi 52 meter dengan aliran air mikrohidro 28 L/s. Digunakan 5 set turbin angin Savonius seluas 73,8 m2 yang dikopel dengan sistem gearbox untuk menyediakan daya 1,135 HP dan torsi 765,011 Nm bagi pompa piston tipe FMC E0413 untuk beroperasi selama 24 jam mengisi tangki air bervolume total 361,2 m3. Sebuah sistem prototipe dibuat untuk mengesahkan perancangan sistem ini, bertujuan untuk memompa air sebanyak 2 L/menit dengan turbin angin seluas 0,3572 m2. Efisiensi teoritis sistem adalah 19,73 % dan prototype adalah 1,25 %

    Nuclear symmetry potential in the relativistic impulse approximation

    Get PDF
    Using the relativistic impulse approximation with the Love-Franey \textsl{NN} scattering amplitude developed by Murdock and Horowitz, we investigate the low-energy (100 MeVEkin400\leq E_{\mathrm{kin}}\leq 400 MeV) behavior of the nucleon Dirac optical potential, the Schr\"{o}dinger-equivalent potential, and the nuclear symmetry potential in isospin asymmetric nuclear matter. We find that the nuclear symmetry potential at fixed baryon density decreases with increasing nucleon energy. In particular, the nuclear symmetry potential at saturation density changes from positive to negative values at nucleon kinetic energy of about 200 MeV. Furthermore,the obtained energy and density dependence of the nuclear symmetry potential is consistent with those of the isospin- and momentum-dependent MDI interaction with x=0x=0, which has been found to describe reasonably both the isospin diffusion data from heavy-ion collisions and the empirical neutron-skin thickness of 208^{208} Pb.Comment: 8 pages, 5 figures, revised version to appear in PR
    corecore