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Determination of the stiffness of the nuclear symmetry energy from isospin diffusion
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With an isospin- and momentum-dependent transport model, we find that the degree of isospin
diffusion in heavy ion collisions at intermediate energies is affected by both the stiffness of the nuclear
symmetry energy and the momentum dependence of the nucleon potential. Using a momentum
dependence derived from the Gogny effective interaction, recent experimental data from NSCL/MSU
on isospin diffusion are shown to be consistent with a nuclear symmetry energy given by Esym(ρ) ≈
31.6(ρ/ρ0)

1.05 at subnormal densities. This leads to a significantly constrained value of about −550
MeV for the isospin-dependent part of the isobaric incompressibility of isospin asymmetric nuclear
matter.

PACS numbers: 25.70.-z, 21.30.Fe., 21.65.+f, 24.10.Lx

Knowledge on the density dependence of nuclear sym-
metry energy is important for understanding not only the
structure of radioactive nuclei [1, 2, 3, 4] but also many
important issues in nuclear astrophysics [5, 6], such as nu-
cleosynthesis during pre-supernova evolution of massive
stars and the cooling of protoneutron stars. Although
the nuclear symmetry energy at normal nuclear matter
density is known to be around 30 MeV from the empirical
liquid-drop mass formula [7, 8], its values at other den-
sities are poorly known [9, 10]. Studies based on either
microscopic many-body theories or phenomenological ap-
proaches have so far given widely divergent predictions on
the density dependence of nuclear symmetry energy [11].
Empirically, the incompressibility of asymmetric nuclear
matter is essentially undetermined [12], even though the
incompressibility of symmetric nuclear matter at its satu-
ration density ρ0 = 0.16 fm−3 has been determined to be
231±5 MeV from nuclear giant monopole resonances [13]
and the equation of state at densities of 2ρ0 < ρ < 5ρ0

has been constrained by measurements of collective flows
in nucleus-nucleus collisions [14].

In light of the new opportunities provided by radioac-
tive beams, a lot of interests and activities have recently
been devoted to extract information on the density de-
pendence of nuclear symmetry energy from reactions in-
duced by such nuclei [15, 16, 17, 18, 19, 20, 21, 22, 23,
24, 25, 26]. In particular, isospin diffusion in heavy-
ion collisions is found to depend sensitively on the den-
sity dependence of nuclear symmetry energy [27, 28, 29].
Within a momentum-independent transport model, in
which the nuclear potential depends only on local nu-
clear density, the isospin diffusion data from recent ex-
periments at the NSCL/MSU (National Superconducting
Cyclotron Laboratory at Michigan State University) was
found to favor a quadratic density dependence for the
interaction part of nuclear symmetry energy [30]. This
conclusion has stimulated much interest because of its
implications to nuclear many-body theories and nuclear

astrophysics. However, the nuclear potential acting on a
nucleon is known to depend also on its momentum. For
nuclear isoscalar potential, its momentum dependence is
well-known and is important in extracting information
about the equation of state of symmetric nuclear matter
[14, 31, 32, 33, 34, 35, 36, 37, 38]. Very recently, the
momentum-dependence of the isovector (symmetry) po-
tential [11, 39, 40, 41] was also shown to be important
for understanding a number of isospin related phenomena
in heavy-ion reactions [42, 43, 44]. It is thus necessary
to include momentum dependence in both the isoscalar
and isovector potentials for studying the effect of nuclear
symmetry energy on isospin diffusion. In this Letter, we
shall show that the isospin diffusion data are consistent
instead with a softer symmetry energy that is nearly lin-
ear in density within the momentum-dependent effective
interaction used in present study.

Our study is based on an isospin-dependent transport
model IBUU04 that uses experimental nucleon-nucleon
cross sections in free space and includes the momen-
tum dependence in both the isoscalar and isovector po-
tentials [42]. Although the momentum dependence of
the isoscalar potential is known empirically, that of the
isovector potential is not as well determined [45]. In the
IBUU04 model, it is based on the Gogny effective interac-
tions. Specifically, the potential U(ρ, δ,p, τ) for a nucleon
with isospin τ (1/2 for neutrons and −1/2 for protons)
and momentum p in asymmetric nuclear matter at total
density ρ is given by [40]

UMDI(ρ, δ,p, τ) = Au
ρτ ′

ρ0
+ Al
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ρ0
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where ρτ and ρ′τ denote proton or neutron density with
τ 6= τ ′; and δ ≡ (ρn − ρp)/ρ is the isospin asymmetry.
The fτ (r,p) denotes the phase-space distribution func-
tion at coordinate r and momentum p. The correspond-
ing momentum-dependent interaction (MDI) leads to an
incompressibility of K0 = 211 MeV for the symmetric
nuclear matter at saturation density. On the right hand
side of Eq.(1), the first four terms with σ = 3/4 and
B = 106.35 MeV describe the momentum-independent
interaction. The terms with parameters Cτ,τ = −11.7
MeV and Cτ,τ ′ = −103.4 MeV describe the momentum-
dependent interaction of a nucleon of isospin τ and mo-
mentum p with like and unlike nucleons in the back-
ground fields, respectively. With the parameter Λ =
1.0p0

F , where p0
F denotes nucleon Fermi momentum at

ρ0, the isoscalar potential (Un(ρ, p) + Up(ρ, p))/2 coin-
cides with predictions from the variational many-body
theory using inputs constrained by nucleon-nucleon scat-
tering data [42], and the isovector potential (Un(ρ, p) −
Up(ρ, p))/2 also agrees with the momentum dependence
of the Lane potential extracted from low-energy nucleon-
nucleus scattering experiments [42] and recent neutron-
nucleus data at 96 MeV [46].
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FIG. 1: (Color online) Density dependence of nuclear sym-
metry energy for different values of x parameter in Eq.(1).

The parameter x in Eq.(1) is introduced to mimic the
various theoretical predictions for the density dependence
of the nuclear symmetry energy Esym(ρ), which is defined
via the parabolic approximation to the nucleon specific
energy in an isospin asymmetric nuclear matter [9, 10],
i.e.,

E(ρ, δ) = E(ρ, δ = 0) + Esym(ρ)δ2 + O(δ4). (2)

With x = 1, for instance, the Esym(ρ) is what pre-
dicted by a Hartree-Fock calculation using the Gogny
effective interaction [40]. The parameters Al(x) and
Au(x) are Al(x) = −120.57 + 2Bx/(σ + 1) and Au(x) =
−95.98 − 2Bx/(σ + 1), respectively. Including also the
well-known contribution from nucleon kinetic energies,
i.e., Ekin

sym(ρ) = (22/3 − 1)3
5E0

F (ρ/ρ0)
2/3 ≈ 13.0(ρ/ρ0)

2/3,

TABLE I: The parameters F (MeV), G , Ksym (MeV), L
(MeV), and Kasy (MeV) for different values of x.

x F G Ksym L Kasy

1 107.232 1.246 −270.4 16.4 -368.8

0 129.981 1.059 −88.6 62.1 -461.2

−1 3.673 1.569 94.1 107.4 -550.3

−2 −38.395 1.416 276.3 153.0 -641.7

the density dependence of nuclear symmetry energy is
shown in Fig. 1 for x = 1, 0, −1 and −2.

The interaction part of nuclear symmetry energy can
be parameterized by Epot

sym(ρ) = F (x)ρ/ρ0 + (18.6 −

F (x))(ρ/ρ0)
G(x), with F (x) and G(x) given in Table

I for x = 1, 0, −1 and −2. Also shown are other
characteristics of the symmetry energy, including its
slope L ≡ 3ρ0 (dEsym/dρ)ρ=ρ0

and curvature Ksym ≡

9ρ2
0

(

d2Esym/dρ2
)

ρ=ρ0

at ρ0, as well as the isospin-

dependent part Kasy ≈ Ksym − 6L [20] of the isobaric
incompressibility of asymmetric nuclear matter K(δ) =
K0 + Kasyδ

2 [47, 48].
For comparisons we have also constructed the follow-

ing momentum-independent potential (SBKD) that has
K0 = 200 MeV [49] and exactly the same Esym(ρ) as the
MDI interaction:

USBKD(ρ, δ, τ) ≡ −356 ρ/ρ0 + 303 (ρ/ρ0)
7/6

+ 4τEpot
sym(ρ) + (18.6 − F (x))

× (G(x) − 1)(ρ/ρ0)
G(x)δ2. (3)

Isospin diffusion in heavy ion collisions can in principle
be studied by examining the average isospin asymmetry
of the projectile-like residue in the final state. Since re-
actions at intermediate energies are complicated by pree-
quilibrium particle emission and production of neutron-
rich fragments at mid-rapidity, differences of isospin dif-
fusions in mixed and symmetric systems are usually used
to minimize these effects [30]. To study isospin diffusion
in 124Sn + 112Sn reactions at E = 50 MeV/nucleon and
an impact parameter of b = 6 fm, we thus also consider
the reaction systems 124Sn + 124S and 112Sn + 112Sn and
124Sn + 112Sn at same energy and impact parameter as
in Ref.[30]. The degree of isospin diffusion in the reaction
124Sn + 112Sn is then measured by [50]

Ri =
2X124Sn+112Sn − X124Sn+124Sn − X112Sn+112Sn

X124Sn+124Sn − X112Sn+112Sn
(4)

where X is the average isospin asymmetry 〈δ〉 of the
124Sn-like residue defined as the composition of nucle-
ons with local densities higher than ρ0/20 and velocities
larger than 1/2 the beam velocity in the c.m. frame. A
density cut of ρ0/8 is found to give almost same results.
In ideal case, the value of Ri ranges between 0.05 and 1
from complete mixing to full transparency.
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FIG. 2: (Color online) Time evolutions of Ri and average
central density for MDI and SBKD interactions with x = −1.

As an example of present more realistic calculations,
we show in Fig. 2 the time evolutions of Ri and aver-
age central density calculated with x = −1 using both
MDI and SBKD interactions. It is seen that the isospin
diffusion process occurs mainly from about 30 fm/c to
80 fm/c corresponding to average central density from
about 1.2ρ0 to 0.3ρ0. However, the value of Ri still
changes slightly with time until after about 120 fm/c
when projectile-like and target-like residues are well sep-
arated. This is partly due to the fact that the isovector
potential remains appreciable at low density as shown in
Fig. 3, where the symmetry potential (Un − Up)/2δ is
shown as a function of momentum (panel (a)) or density
(panel (b)) for the MDI interaction and as a function
of density for the SBKD interaction (panel (c)). Also,
evaluating isospin diffusion Ri based on three reaction
systems, that have different time evolutions for the pro-
jectile residue as a result of different total energies and
numbers of nucleons, further contributes to the change of
Ri at low density. For the two interactions consider here,
the main difference between the values for Ri appears in
the expansion phase when densities in the participant re-
gion are well below ρ0. The experimental data from MSU
are seen to be reproduced nicely by the MDI interaction
with x = −1, while the SBKD interaction with x = −1
leads to a significantly lower value for Ri as the strength
of the momentum-independent potential is stronger (see
Fig. 3), which has been shown to enhance the isospin
diffusion [27, 29, 30].

To see how isospin diffusion depends on the density
dependence of nuclear symmetry energy, we show in Fig.
4 the final saturated value for 1−Ri, which measures the
degree of isospin diffusion, as a function of Kasy for both
MDI and SBKD interactions. It is obtained by averaging
the value of 1 − Ri after 120 fm/c with error bars cor-
responding to its dispersion, whose magnitude is similar
to the error band shown in Ref.[30] for the theoretical
results from the BUU model. For the SBKD interac-
tion without momentum dependence, the isospin diffu-
sion decreases monotonically (i.e., increasing value for
Ri) with increasing strength of Kasy as the correspond-
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FIG. 3: (Color online) Symmetry potential as a function of
momentum (a) or density (b) with the MDI interaction and
SBKD interaction (c).

ing isovector potential is mostly positive and decreases
with increasing stiffness of Esym(ρ) in the whole range of
considered x parameter. The isospin diffusion is reduced
when the momentum-dependent interaction MDI is used
as the momentum dependence weakens the strength of
symmetry potential except for x = −2. As seen in Fig.
3, the symmetry potential in the MDI interaction has
the smallest strength for x = −1 as it is close to zero at
k ≈ 1.5 fm−1 and ρ/ρ0 ≈ 0.5, and increases again with
further hardening of the symmetry energy, e.g., x = −2,
when it becomes largely negative at all momenta and
densities. The MDI interaction with x = −1 thus gives
the smallest degree of isospin diffusion among the inter-
actions considered in present study and reproduces the
MSU data as already shown in Fig. 2.
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FIG. 4: (Color online) The degree of isospin diffusion as a
function of Kasy with the MDI and SBKD interactions. γ is
the parameter for fitting the corresponding symmetry energy
with Esym(ρ) = 31.6(ρ/ρ0)

γ .

The symmetry energy in the MDI interaction with
x = −1 is Esym(ρ) = 13.0(ρ/ρ0)

2/3 + 3.7ρ/ρ0 +
14.9(ρ/ρ0)

1.57 ≈ 31.6(ρ/ρ0)
1.05. It leads to a value of

Kasy ≈ −550 MeV for the isospin dependent part of the
isobaric incompressibility of asymmetric nuclear matter,
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which should be compared to the published constraint of
−566± 1350 < Kasy < 139± 1617 MeV extracted earlier
from studying giant monopole resonances [12].

It is worthwhile to mention that if the isoscalar part
of the SBKD potential in Eq. (3) is replaced with the
momentum-dependent MDYI potential of Gale et al.

[33], which has a similar K0 as those for the MDI and
SBKD potentials, the resulting Ri = 0.37± 0.07 is much
closer to that obtained with the MDI (Ri = 0.44± 0.05)
than with the SBKD (Ri = 0.19 ± 0.06) interaction for
x = −1. The strongly repulsive momentum-dependent
isoscalar potential thus reduces the effect of isovector po-
tential on the reaction dynamics. Results from present
study are therefore not much affected by the uncertainty
in the momentum dependence of the isovector potential.

In summary, we have used an isospin- and momentum-
dependent transport model to study isospin diffusion in
heavy-ion collisions at intermediate energies. We find
that the diffusion of isospins happens mostly during ex-
pansion stage when the density is below normal nuclear
matter density. The momentum dependence in the nu-
clear potential plays an important role and affects the
sensitivity of the degree of isospin diffusion to the density
dependence of nuclear symmetry energy. Aside from the
uncertainty due to residual effects of preequilibrium par-
ticle emission and cluster formation, the present study
shows that within the context of the mean-field inter-
actions considered here recent experimental data from
NSCL/MSU on isospin diffusion is consistent with a nu-
clear symmetry energy that is nearly linear in density
at subnormal densities. This leads to a significantly
constrained value of about −550 MeV for the isospin-
dependent part of the isobaric incompressibility of isospin
asymmetric nuclear matter.
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Science Publishers, Inc, New York, 2001).

[11] I. Bombaci, in [10], p.35.
[12] S. Shlomo and D. H. Youngblood, Phys. Rev. C 47, 529

(1993).
[13] D.H. Youngblood et al., Phys. Rev. Lett. 82, 691 (1999).
[14] P. Danielewicz et al., Science 298, 1592 (2002).
[15] B.A. Li, C.M. Ko, and Z.Z. Ren, Phys. Rev. Lett. 78,

1644 (1997).
[16] B.A. Li and C.M. Ko, Nucl. Phys. A618, 498 (1997).
[17] V. Baran et al., Nucl. Phys. A632, 287 (1998).
[18] H.S. Xu et al., Phys. Rev. Lett. 85, 716 (2000).
[19] W.P. Tan et al., Phys. Rev. C 64, 051901(R) (2001).
[20] V. Baran et al., Nucl. Phys. A703, 603 (2002).
[21] M.B. Tsang et al., Phys. Rev. Lett. 86, 5023 (2001).
[22] B.A. Li et al., Phys. Rev. C 64, 054604 (2001).
[23] B.A. Li, Phys. Rev. Lett. 85, 4221 (2000).
[24] Radioactive Nuclear Beams, a special volume of Nucl.

Phys. A693, (2001), Ed. I. Tanihata.
[25] B.A. Li, Phys. Rev. Lett. 88, 192701 (2002); Nucl. Phys.

A708, 365 (2002).
[26] L.W. Chen, V. Greco, C.M. Ko, and B.A. Li, Phys. Rev.

Lett. 90, 162701 (2003); Phys. Rev. C 68, 014605 (2003);
L.W. Chen, C.M. Ko, and B.A. Li, ibid C 68, 017601
(2003); Nucl. Phys. A729, 809 (2003).

[27] M. Farine et al., Z. Phys. A339, 363 (1991).
[28] L. Shi and P. Danielewicz, Phys. Rev. C 68, 064604

(2003).
[29] B.A. Li, Phys. Rev. C 69, 034614 (2004).
[30] M.B. Tsang et al., Phys. Rev. Lett. 92, 062701 (2004).
[31] C. Gale, G. Bertsch, and S. Das Gupta, Phys. Rev. C

35, 1666 (1987).
[32] G.M. Welke et al., Phys. Rev., C 38, 2101 (1988).
[33] C. Gale et al., Phys. Rev., C 41, 1545 (1990).
[34] Q. Pan and P. Danielewicz, Phys. Rev. Lett. 70, 2062

(1993).
[35] J. Zhang et al., Phys. Rev. C 50, 1617 (1994).
[36] V. Greco et al., Phys. Rev. C 59, 810 (1999).
[37] P. Danielewicz, Nucl. Phys. A673, 375 (2000).
[38] D. Persram and C. Gale, Phys. Rev. C 65, 064611 (2002).
[39] P.E. Hodgson, The Nucleon Optical Model, World Sci-

entific, Singapore, 1994.
[40] C.B. Das, S. Das Gupta, C. Gale, and B.A. Li, Phys.

Rev. C 67, 034611 (2003).
[41] B.A. Li, Phys. Rev. C 69, 064602 (2004).
[42] B.A. Li, C. B. Das, S. Das Gupta, and C. Gale, Phys.

Rev. C 69, 011603 (R) (2004); Nucl. Phys. A735, 563
(2004).

[43] J. Rizzo et al., Nucl. Phys. A732, 202 (2004).
[44] L.W. Chen, C.M. Ko, and B.A. Li, Phys. Rev. C 69,

054606 (2004).
[45] V. Baran et al., Phys. Rep., submitted.
[46] J. Klug et al., Phys. Rev. C 67, 0316001(R) (2003); 68,

064605 (2003).
[47] M. Prakash and K. S. Bedell, Phys. Rev. C 32, 1118

(1985).
[48] M. Lopez-Quelle et al., Nucl. Phys. A483, 479 (1988).
[49] G.F. Bertsch et al., Phys. Rev. C 29, 673 (1984).
[50] F. Rami et al., Phys. Rev. Lett. 84, 1120 (2000).


