25 research outputs found
A multi-trophic marker approach reveals high feeding plasticity in Barents Sea under-ice fauna
Microalgae growing within and attached to the bottom of Arctic sea ice (sympagic algae) can serve as a nutritious food resource for animals inhabiting the sea-ice water interface (under-ice fauna), particularly during the bottom ice-algal bloom in spring. As a consequence, under-ice fauna is likely impacted by sea-ice decline and changes in ice-algal primary production. To investigate this, samples of pelagic (=PPOM) and ice-associated particulate organic matter (=IPOM) and the iceassociated amphipods Apherusa glacialis and Eusirus holmii, and polar cod (Boreogadus saida), collected below ridged sea ice at two locations with pronounced differences in productivity in the northern Barents Sea during May 2021, were assessed for their trophic marker content. Specifically, we investigated the composition of diatom- and dinoflagellate-produced fatty acids (FAs), pelagic and sympagic highly branched isoprenoid (HBI) lipids as well as sterols to determine the animals’ dietary preferences and trophic association to the sea-ice habitat during spring. Relative proportions of FAs differed strongly between PPOM and IPOM, indicating differences in species composition and degradation state between pelagic and sympagic habitats, respectively. FA signatures and sterol content of the consumers largely resembled known diet compositions with a strong reliance on diatom-derived carbon in A. glacialis, a higher degree of carnivory in E. holmii and evidence of Calanus-feeding in polar cod. Sympagic HBIs were detected at either low concentrations or not at all, in both producers and consumers, likely as a result of the very low abundance of their source diatoms. Pronounced trophic marker variability in A. glacialis collected at the highly productive shelf slope station versus the less productive central Arctic Basin station suggests a surprisingly high flexibility in carbon-source composition with a stronger reliance on pelagic food when available versus a higher importance of ice algal carbon when pelagic production is low. Nevertheless and despite the general lack (below detection limit) of sympagic HBIs in our dataset, high ice-algal biomass and elevated proportions of polyunsaturated FAs in IPOM compared to other seasons indicate that ice algae constitute a valuable nutritional carbon source as alternative to pelagic carbon during spring
A comparative analysis of life-history features and adaptive strategies of Arctic and subarctic seal species-who will win the climate change challenge?
Understanding and predicting species range shifts is crucial for conservation amid global warming. This study analyzes life-history traits of four seal species (ringed (Pusa hispida (Schreber, 1775)), bearded (Erignathus barbatus (Erxleben, 1777)), harp (Pagophilus groenlandicus (Erxleben, 1777)), and harbour (Phoca vitulina Linnaeus, 1758) seals) in the Canadian Arctic using data from Inuit subsistence harvests. Bearded seals are largest, followed by harp seals, harbour seals, and ringed seals. Seasonal blubber depth patterns show minimal variation in bearded seals, whereas harbour and ringed seals accumulate fat in open-water seasons and use it during ice-covered seasons. Endemic Arctic seals (ringed and bearded) exhibit greater longevity and determinate body growth, reaching maximum size by 5 years, while harbour and harp seals grow indeterminately, physically maturing around 10–15 years. Age of maturation varies, with ringed and harbour seals being more sensitive to environmental fluctuations. Most bearded seals reproduce successfully each year, while ringed seals exhibit more variability in their annual reproductive success. Analysis of isoprenoid lipids in liver tissue indicates that ringed and bearded seals rely on ice-algal production, whereas harp and harbour seals depend on open-water phytoplankton production. Bearded seals appear more specialized and potentially face less competition, while harp seals may adapt better to changing habitats. Despite expected range shifts to higher latitudes, all species exhibit trade-offs, complicating predictions for the evolving Arctic environment
Winter Carnivory and Diapause Counteract the Reliance on Ice Algae by Barents Sea Zooplankton
The Barents Sea is a hotspot for environmental change due to its rapid warming, and information on dietary preferences of zooplankton is crucial to better understand the impacts of these changes on food-web dynamics. We combined lipid-based trophic marker approaches, namely analysis of fatty acids (FAs), highly branched isoprenoids (HBIs) and sterols, to compare late summer (August) and early winter (November/December) feeding of key Barents Sea zooplankters; the copepods Calanus glacialis, C. hyperboreus and C. finmarchicus and the amphipods Themisto libellula and T. abyssorum. Based on FAs, copepods showed a stronger reliance on a diatom-based diet. Phytosterols, produced mainly by diatoms, declined from summer to winter in C. glacialis and C. hyperboreus, indicating the strong direct linkage of their feeding to primary production. By contrast, C. finmarchicus showed evidence of year-round feeding, indicated by the higher winter carnivory FA ratios of 18:1(n-9)/18:1(n-7) than its larger congeners. This, plus differences in seasonal lipid dynamics, suggests varied overwintering strategies among the copepods; namely diapause in C. glacialis and C. hyperboreus and continued feeding activity in C. finmarchicus. Based on the absence of sea ice algae-associated HBIs (IP25 and IPSO25) in the three copepod species during both seasons, their carbon sources were likely primarily of pelagic origin. In both amphipods, increased FA carnivory ratios during winter indicated that they relied strongly on heterotrophic prey during the polar night. Both amphipod species contained sea ice algae-derived HBIs, present in broadly similar concentrations between species and seasons. Our results indicate that sea ice-derived carbon forms a supplementary food rather than a crucial dietary component for these two amphipod species in summer and winter, with carnivory potentially providing them with a degree of resilience to the rapid decline in Barents Sea (winter) sea-ice extent and thickness. The weak trophic link of both zooplankton taxa to sea ice-derived carbon in our study likely reflects the low abundance and quality of ice-associated carbon during late summer and the inaccessibility of algae trapped inside the ice during winter.</jats:p
Essential omega‐3 fatty acids are depleted in sea ice and pelagic algae of the Central Arctic Ocean
Microalgae are the main source of the omega‐3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), essential for the healthy development of most marine and terrestrial fauna including humans. Inverse correlations of algal EPA and DHA proportions (% of total fatty acids) with temperature have led to suggestions of a warming‐induced decline in the global production of these biomolecules and an enhanced importance of high latitude organisms for their provision. The cold Arctic Ocean is a potential hotspot of EPA and DHA production, but consequences of global warming are unknown. Here, we combine a full‐seasonal EPA and DHA dataset from the Central Arctic Ocean (CAO), with results from 13 previous field studies and 32 cultured algal strains to examine five potential climate change effects; ice algae loss, community shifts, increase in light, nutrients, and temperature. The algal EPA and DHA proportions were lower in the ice‐covered CAO than in warmer peripheral shelf seas, which indicates that the paradigm of an inverse correlation of EPA and DHA proportions with temperature may not hold in the Arctic. We found no systematic differences in the summed EPA and DHA proportions of sea ice versus pelagic algae, and in diatoms versus non‐diatoms. Overall, the algal EPA and DHA proportions varied up to four‐fold seasonally and 10‐fold regionally, pointing to strong light and nutrient limitations in the CAO. Where these limitations ease in a warming Arctic, EPA and DHA proportions are likely to increase alongside increasing primary production, with nutritional benefits for a non‐ice‐associated food web
Changing circumpolar distributions and isoscapes of Antarctic krill: Indo‐Pacific habitat refuges counter long‐term degradation of the Atlantic sector
The Southern Ocean provides strong contrasts in rates and directions of change in temperature and sea ice
between its sectors, but it is unknown how these affect plankton species that are distributed right around Antarctica. Here, we quantify the changing circumpolar distributions of Antarctic krill, based on the CHINARE
2013/14 circum-Antarctic expedition, plus independent analyses of compiled abundance data (KRILLBASE:1926–2016). In the 1920s–1930s, average krill densities in the Atlantic-Bellingshausen sector were eight times
those in the other sectors. More recently, however, the concentration factor has dropped to only about twofold.
This reflects a rebalancing broadly commensurate with climatic forcing: krill densities declined in the Atlantic Bellingshausen sector which has warmed and lost sea ice, densities may have increased in the Ross-Pacific sector
which showed the opposite climatic trend, while densities showed no significant changes in the more stable
Lazarev-Indian sectors. Such changes would impact circumpolar food webs, so to better define these we examined circumpolar trends of isotopic values in krill and other zooplankton based on the CHINARE cruise and a
literature meta-analysis. Krill δ15N values ranged significantly between sectors from 2.21‰ (Indian) to 3.59‰
(Ross-Pacific), about half a trophic level lower than another key euphausiid, Thysanoessa macrura. These isoscapes form a baseline for interpreting the reliance of predators on euphausiids, within the varying food webs
around the continent. Overall, we suggest that the Indo-Pacific sector has acted as a refuge for the circumpolar
krill stock while conditions for them deteriorated rapidly in the Atlantic sector
Landfast sea ice-benthic coupling during spring and potential impacts of system changes on food web dynamics in Eclipse Sound, Canadian Arctic
Spatio-temporal variability in the winter diet of larval and juvenile Antarctic krill, Euphausia superba, in ice-covered waters
Antarctic krill Euphausia superba is an ecological key species in the Southern Ocean and a major fisheries resource. The winter survival of age class 0 (AC0) krill is susceptible to changes in the sea-ice environment due to their association with sea ice and their need to feed during their first winter. However, our understanding of their overwintering diet and its variability is limited. We studied the spatio-temporal variability of the diet in 4 cohorts of AC0 krill in the Northern Weddell Sea during late winter 2013 using stomach contents, fatty acids (FAs) and bulk stable isotope analysis (BSIA). Stomach contents were dominated by diatoms in numbers and occasionally contained large volumes of copepods. Many of the prey species found in the stomachs were sea ice-associated. Our results show that the diet of overwintering AC0 krill varies significantly in space and time. Variability in stomach content composition was related to environmental factors, including chlorophyll a concentration, copepod abundance and sea-ice cover. In contrast, FA composition mainly varied between cohorts, indicating variation in the long-term diet. The condition of the AC0 krill was reflected in FA and BSIA analysis, suggesting that the availability of sea ice-derived food sources over a long period may impact the condition of developing AC0 krill significantly. The spatio-temporal availability of sea-ice resources is a potentially important factor for AC0 krill winter survival
