240 research outputs found
Observation of Metastable and Stable Energy Levels of EL2 in Semi-insulating GaAs
By using combination of detailed experimental studies, we identify the
metastable and stable energy levels of EL2 in semi-insulating GaAs. These
results are discussed in the light of the recently proposed models for stable
and metastable configurations of EL2 in GaAs
A Hybrid model for the origin of photoluminescence from Ge nanocrystals in SiO matrix
In spite of several articles, the origin of visible luminescence from
germanium nanocrystals in SiO matrix is controversial even today. Some
authors attribute the luminescence to quantum confinement of charge carriers in
these nanocrystals. On the other hand, surface or defect states formed during
the growth process, have also been proposed as the source of luminescence in
this system. We have addressed this long standing query by simultaneous
photoluminescence and Raman measurements on germanium nanocrystals embedded in
SiO matrix, grown by two different techniques: (i) low energy
ion-implantation and (ii) atom beam sputtering. Along with our own experimental
observations, we have summarized relevant information available in the
literature and proposed a \emph{Hybrid Model} to explain the visible
photoluminescence from nanocrystalline germanium in SiO matrix.Comment: 23 pages, 8 figure
A microscopic complex potential description of elastic, inelastic cross section in the Coulomb nuclear interference region in the 28Si on 28Si system
Elastic and inelastic angular distribution and excitation functions were measured for the 28Si + 28Si system in the vicinity of the Coulomb barrier. While the elastic data could be described very well by using fully microscopic complex potential, the inelastic cross sections were found to be more sensitive to small variations in the potential. In particular the Coulomb nuclear interference dip observed in the inelastic excitation functions could not be fitted satisfactorily with calculation. Inclusion of an energy dependent term of Gaussian shape to the associated matrix element with the reorientation coupling in the phenomenological calculations leads to a better fit the inelastic excitation functions. © 1998 Elsevier Science B.V
How to increase technology transfers to developing countries: a synthesis of the evidence
The existing United Nations Framework Convention on Climate Change (UNFCCC) has failed to deliver the rate of low-carbon technology transfer (TT) required to curb GHG emissions in developing countries. This failure has exposed the limitations of universalism and renewed interest in bilateral approaches to TT. Gaps are identified in the UNFCCC approach to climate change TT: missing links between international institutions and the national enabling environments that encourage private investment; a non-differentiated approach for (developing) country and technology characteristics; and a lack of clear measurements of the volume and effectiveness of TTs. Evidence from econometric literature and business experience on climate change TT is reviewed, so as to address the identified pitfalls of the UNFCCC process. Strengths and weaknesses of different methodological approaches are highlighted. International policy recommendations are offered aimed at improving the level of emission reductions achieved through TT
Visual tool for estimating the fractal dimension of images
This work presents a new Visual Basic 6.0 application for estimating the
fractal dimension of images, based on an optimized version of the box-counting
algorithm. Following the attempt to separate the real information from noise,
we considered also the family of all band-pass filters with the same band-width
(specified as parameter). The fractal dimension can be thus represented as a
function of the pixel color code. The program was used for the study of
paintings cracks, as an additional tool which can help the critic to decide if
an artistic work is original or not. In its second version, the application was
extended for working also with csv files and three-dimensional images.Comment: A new version was accepted to Computer Physics Communications
doi:10.1016/j.cpc.2009.12.00
Mechanistic details of the formation and growth of nanoscale voids in Ge under extreme conditions within an ion track
The formation of nanoscale voids in amorphous-germanium (a-Ge), and their size and shape evolution under ultra-fast thermal spikes within an ion track of swift heavy ion, is meticulously expatiated using experimental and theoretical approaches. Two step energetic ion irradiation processes were used to fabricate novel and distinct embedded nanovoids within bulk Ge. The 'bow-tie' shape of voids formed in a single ion track tends to attain a spherical shape as the ion tracks overlap at a fluence of about 1 x 10(12) ions cm(-2). The void assumes a prolate spheroid shape with major axis along the ion trajectory at sufficiently high ion fluences. Small angle x-ray scattering can provide complementary information about the primary stage of void formation hence this technique is applied for monitoring simultaneously their formation and growth dynamics. The results are supported by the investigation of cross-sectional transmission and scanning electron micrographs. The multi-time-scale theoretical approach corroborates the experimental findings and relates the bow-tie shape void formation to density variations as a result of melting and resolidification of Ge within the region of thermal spike generated along an ion track, plus non-isotropic stresses generated towards the end of the thermal spike.Peer reviewe
- …
