35,312 research outputs found
Classification of scale-free networks
While the emergence of a power law degree distribution in complex networks is
intriguing, the degree exponent is not universal. Here we show that the
betweenness centrality displays a power-law distribution with an exponent \eta
which is robust and use it to classify the scale-free networks. We have
observed two universality classes with \eta \approx 2.2(1) and 2.0,
respectively. Real world networks for the former are the protein interaction
networks, the metabolic networks for eukaryotes and bacteria, and the
co-authorship network, and those for the latter one are the Internet, the
world-wide web, and the metabolic networks for archaea. Distinct features of
the mass-distance relation, generic topology of geodesics and resilience under
attack of the two classes are identified. Various model networks also belong to
either of the two classes while their degree exponents are tunable.Comment: 6 Pages, 6 Figures, 1 tabl
Optimal conversion of Bose condensed atoms into molecules via a Feshbach resonance
In many experiments involving conversion of quantum degenerate atomic gases
into molecular dimers via a Feshbach resonance, an external magnetic field is
linearly swept from above the resonance to below resonance. In the adiabatic
limit, the fraction of atoms converted into molecules is independent of the
functional form of the sweep and is predicted to be 100%. However, for
non-adiabatic sweeps through resonance, Landau-Zener theory predicts that a
linear sweep will result in a negligible production of molecules. Here we
employ a genetic algorithm to determine the functional time dependence of the
magnetic field that produces the maximum number of molecules for sweep times
that are comparable to the period of resonant atom-molecule oscillations,
. The optimal sweep through resonance indicates that
more than 95% of the atoms can be converted into molecules for sweep times as
short as while the linear sweep results in a
conversion of only a few percent. We also find that the qualitative form of the
optimal sweep is independent of the strength of the two-body interactions
between atoms and molecules and the width of the resonance
Recommended from our members
How Does Wind Project Performance Change with Age in the United States?
Wind-plant performance declines with age, and the rate of decline varies between regions. The rate of performance decline is important when determining wind-plant financial viability and expected lifetime generation. We determine the rate of age-related performance decline in the United States wind fleet by evaluating generation records from 917 plants. We find the rate of performance decline to be 0.53%/year for older vintages of plants and 0.17%/year for newer vintages of plants on an energy basis for the first 10 years of operation, which is on the lower end of prior estimates in Europe. Unique to the United States, we find a significant drop in performance by 3.6% after 10 years, as plants lose eligibility for the production tax credit. Certain plant characteristics, such as the ratio of blade length to nameplate capacity, influence the rate of performance decline. These results indicate that the performance decline rate can be partially managed and influenced by policy
Dynamics and Scaling of One Dimensional Surface Structures
We study several one dimensional step flow models. Numerical simulations show
that the slope of the profile exhibits scaling in all cases. We apply a scaling
ansatz to the various step flow models and investigate their long time
evolution. This evolution is described in terms of a continuous step density
function, which scales in time according to D(x,t)=F(xt^{-1/\gamma}). The value
of the scaling exponent \gamma depends on the mass transport mechanism. When
steps exchange atoms with a global reservoir the value of \gamma is 2. On the
other hand, when the steps can only exchange atoms with neighboring terraces,
\gamma=4. We compute the step density scaling function for three different
profiles for both global and local exchange mechanisms. The computed density
functions coincide with simulations of the discrete systems. These results are
compared to those given by the continuum approach of Mullins.Comment: 12 pages, 11 postscript figure
Transfer of Nonclassical Properties from A Microscopic Superposition to Macroscopic Thermal States in The High Temperature Limit
We present several examples where prominent quantum properties are
transferred from a microscopic superposition to thermal states at high
temperatures. Our work is motivated by an analogy of Schrodinger's cat paradox,
where the state corresponding to the virtual cat is a mixed thermal state with
a large average photon number. Remarkably, quantum entanglement can be produced
between thermal states with nearly the maximum Bell-inequality violation even
when the temperatures of both modes approach infinity.Comment: minor corrections, acknowledgments added, Phys.Rev.Lett., in pres
Quantification of Macroscopic Quantum Superpositions within Phase Space
Based on phase-space structures of quantum states, we propose a novel measure
to quantify macroscopic quantum superpositions. Our measure simultaneously
quantifies two different kinds of essential information for a given quantum
state in a harmonious manner: the degree of quantum coherence and the effective
size of the physical system that involves the superposition. It enjoys
remarkably good analytical and algebraic properties. It turns out to be the
most general and inclusive measure ever proposed that it can be applied to any
types of multipartite states and mixed states represented in phase space.Comment: 4 pages, 1 figure, accepted for publication in Phys. Rev. Let
Novel Crossover in Coupled Spin Ladders
We report a novel crossover behavior in the long-range-ordered phase of a
prototypical spin- Heisenberg antiferromagnetic ladder compound
. The staggered order was previously evidenced
from a continuous and symmetric splitting of N NMR spectral lines on
lowering temperature below mK, with a saturation towards
mK. Unexpectedly, the split lines begin to further separate away
below mK while the line width and shape remain completely
invariable. This crossover behavior is further corroborated by the NMR
relaxation rate measurements. A very strong suppression reflecting
the ordering, , observed above , is replaced by
below . These original NMR features are indicative of
unconventional nature of the crossover, which may arise from a unique
arrangement of the ladders into a spatially anisotropic and frustrated coupling
network.Comment: 5 pages, 3 figure
- …
