103,066 research outputs found
X-ray Emission from the Radio Jet in 3C 120
We report the discovery of X-ray emission from a radio knot at a projected
distance of 25" from the nucleus of the Seyfert galaxy, 3C 120. The data were
obtained with the ROSAT High Resolution Imager (HRI). Optical upper limits for
the knot preclude a simple power law extension of the radio spectrum and we
calculate some of the physical parameters for thermal bremsstrahlung and
synchrotron self-Compton models. We conclude that no simple model is consistent
with the data but if the knot contains small regions with flat spectra, these
could produce the observed X-rays (via synchrotron emission) without being
detected at other wavebands.Comment: 6 pages latex plus 3 ps/eps figures. Uses 10pt.sty and
emulateapj.sty. Accepted for publication in the ApJ (6 Jan 99
Fourier's law on a one-dimensional optical random lattice
We study the transport properties of a one-dimensional hard-core bosonic
lattice gas coupled to two particle reservoirs at different chemical potentials
which generate a current flow through the system. In particular, the influence
of random fluctuations of the underlying lattice on the stationary-state
properties is investigated. We show analytically that the steady-state density
presents a linear profile. The local steady-state current obeys the Fourier law
where is a typical timescale of the lattice
fluctuations and the density gradient imposed by the reservoirs.Comment: 9 pages, 2 figure
Single pilot IFR accident data analysis
The aircraft accident data recorded and maintained by the National Transportation Safety Board for 1964 to 1979 were analyzed to determine what problems exist in the general aviation single pilot instrument flight rules environment. A previous study conducted in 1978 for the years 1964 to 1975 provided a basis for comparison. The purpose was to determine what changes, if any, have occurred in trends and cause-effect relationships reported in the earlier study. The increasing numbers have been tied to measures of activity to produce accident rates which in turn were analyzed in terms of change. Where anomalies or unusually high accident rates were encountered, further analysis was conducted to isolate pertinent patterns of cause factors and/or experience levels of involved pilots. The bulk of the effort addresses accidents in the landing phase of operations. A detailed analysis was performed on controlled/uncontrolled collisions and their unique attributes delineated. Estimates of day vs. night general aviation activity and accident rates were obtained
Computer program for solving laminar, transitional, or turbulent compressible boundary-layer equations for two-dimensional and axisymmetric flow
A numerical algorithm and computer program are presented for solving the laminar, transitional, or turbulent two dimensional or axisymmetric compressible boundary-layer equations for perfect-gas flows. The governing equations are solved by an iterative three-point implicit finite-difference procedure. The software, program VGBLP, is a modification of the approach presented in NASA TR R-368 and NASA TM X-2458, respectively. The major modifications are: (1) replacement of the fourth-order Runge-Kutta integration technique with a finite-difference procedure for numerically solving the equations required to initiate the parabolic marching procedure; (2) introduction of the Blottner variable-grid scheme; (3) implementation of an iteration scheme allowing the coupled system of equations to be converged to a specified accuracy level; and (4) inclusion of an iteration scheme for variable-entropy calculations. These modifications to the approach presented in NASA TR R-368 and NASA TM X-2458 yield a software package with high computational efficiency and flexibility. Turbulence-closure options include either two-layer eddy-viscosity or mixing-length models. Eddy conductivity is modeled as a function of eddy viscosity through a static turbulent Prandtl number formulation. Several options are provided for specifying the static turbulent Prandtl number. The transitional boundary layer is treated through a streamwise intermittency function which modifies the turbulence-closure model. This model is based on the probability distribution of turbulent spots and ranges from zero to unity for laminar and turbulent flow, respectively. Several test cases are presented as guides for potential users of the software
Tools made of ice facilitate forming of soft, sticky materials
Tools made of ice facilitate the forming or shaping of materials that are soft and sticky in the uncured state. The low-temperature of the ice slows the curing of the material, extending the working time available before setup. Handling problems are eliminated because the material does not adhere to the tool, and the melting ice serves as a lubricant
Standard spacecraft economic analysis. Volume 1: Executive summary
A study of the comparative program costs associated with use of various standardized spacecraft for Air Force space test program missions to be flown on the space shuttle during the 1980-1990 time period is reviewed. The first phase of the study considered a variety of procurement mixes composed of existing or programmed NASA standard spacecraft designs and a Air Force standard spacecraft design. The results were briefed to a joint NASA/Air Force audience on July 11, 1976. The second phase considered additional procurement options using an upgraded version of an existing NASA design. The results of both phases are summarized
Cathodoluminescence of nanocrystalline Y2O3:Eu3+ with various Eu3+ concentrations
© The Author(s) 2014. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited.This article has been made available through the Brunel Open Access Publishing Fund.Herein a study on the preparation and cathodoluminescence of monosized spherical nanoparticles of Y2O3:Eu3+ having a Eu3+ concentration that varies between 0.01 and 10% is described. The luminous efficiency and decay time have been determined at low a current density, whereas cathodoluminescence-microscopy has been carried out at high current density, the latter led to substantial saturation of certain spectral transitions. A novel theory is presented to evaluate the critical distance for energy transfer from Eu3+ ions in S6 to Eu3+ ions in C2 sites. It was found that Y2O3:Eu3+ with 1–2% Eu3+ has the highest luminous efficiency of 16lm/w at 15keV electron energy. Decay times of the emission from 5D0 (C2) and 5D1 (C2) and 5D0 (S6) levels were determined. The difference in decay time from the 5D0 (C2) and 5D1 (C2) levels largely explained the observed phenomena in the cathodoluminescence-micrographs recorded with our field emission scanning electron microscope
Positive psychology and romantic scientism: Reply to comments on Brown, Sokal, & Friedman (2013)
This is a response to five comments [American Psychologist 69, 626-629 and
632-635 (2014)] on our article arXiv:1307.7006.Comment: PDF, 9 page
Solar vector magnetograph for Max 1991 programs
An instrument for measuring solar magnetic fields is under construction. Key requirements for any solar vector magnetograph are high spatial resolution, high optical throughput, fine spectral selectivity, and ultralow instrumental polarization. An available 25 cm Cassegrain telescope will provide 0.5 arcsec spatial resolution. Spectral selection will be accomplished with a 150 mA filter based on electrically tunable solid Fabry-Perot etalon. Filter and polarization analyzer design concepts for the magnetograph are described in detail. The instrument will be tested at JHU/APL, and then moved to the National Solar Observatory in late 1988. It will be available to support the Max 1991 program
- …
