513 research outputs found
Solving One Dimensional Scalar Conservation Laws by Particle Management
We present a meshfree numerical solver for scalar conservation laws in one
space dimension. Points representing the solution are moved according to their
characteristic velocities. Particle interaction is resolved by purely local
particle management. Since no global remeshing is required, shocks stay sharp
and propagate at the correct speed, while rarefaction waves are created where
appropriate. The method is TVD, entropy decreasing, exactly conservative, and
has no numerical dissipation. Difficulties involving transonic points do not
occur, however inflection points of the flux function pose a slight challenge,
which can be overcome by a special treatment. Away from shocks the method is
second order accurate, while shocks are resolved with first order accuracy. A
postprocessing step can recover the second order accuracy. The method is
compared to CLAWPACK in test cases and is found to yield an increase in
accuracy for comparable resolutions.Comment: 15 pages, 6 figures. Submitted to proceedings of the Fourth
International Workshop Meshfree Methods for Partial Differential Equation
Tidal spin-up of stars in dense stellar cusps around massive black holes
We show that main-sequence stars in dense stellar cusps around massive black
holes are likely to rotate at a significant fraction of the centrifugal breakup
velocity due to spin-up by hyperbolic tidal encounters. We use realistic
stellar structure models to calculate analytically the tidal spin-up in soft
encounters, and extrapolate these results to close and penetrating collisions
using smoothed particle hydrodynamics simulations. We find that the spin-up
falls off only slowly with distance from the black hole because the increased
tidal coupling in slower collisions at larger distances compensates for the
decrease in the stellar density. We apply our results to the stars near the
massive black hole in the Galactic Center. Over their lifetime, ~1 Msol main
sequence stars in the inner 0.3 pc of the Galactic Center are spun-up on
average to ~10%--30% of the centrifugal breakup limit. Such rotation is ~20--60
times higher than is usual for such stars and may affect their subsequent
evolution and their observed properties.Comment: 25 pages, 7 figures. Submitted to Ap
COSMOS: A Hybrid N-Body/Hydrodynamics Code for Cosmological Problems
We describe a new hybrid N-body/hydrodynamical code based on the
particle-mesh (PM) method and the piecewise-parabolic method (PPM) for use in
solving problems related to the evolution of large-scale structure, galaxy
clusters, and individual galaxies. The code, named COSMOS, possesses several
new features which distinguish it from other PM-PPM codes. In particular, to
solve the Poisson equation we have written a new multigrid solver which can
determine the gravitational potential of isolated matter distributions and
which properly takes into account the finite-volume discretization required by
PPM. All components of the code are constructed to work with a nonuniform mesh,
preserving second-order spatial differences. The PPM code uses vacuum boundary
conditions for isolated problems, preventing inflows when appropriate. The PM
code uses a second-order variable-timestep time integration scheme. Radiative
cooling and cosmological expansion terms are included. COSMOS has been
implemented for parallel computers using the Parallel Virtual Machine (PVM)
library, and it features a modular design which simplifies the addition of new
physics and the configuration of the code for different types of problems. We
discuss the equations solved by COSMOS and describe the algorithms used, with
emphasis on these features. We also discuss the results of tests we have
performed to establish that COSMOS works and to determine its range of
validity.Comment: 43 pages, 14 figures, submitted to ApJS and revised according to
referee's comment
Cooling Radiation and the Lyman-alpha Luminosity of Forming Galaxies
We examine the cooling radiation from forming galaxies in hydrodynamic
simulations of the LCDM model (cold dark matter with a cosmological constant),
focusing on the Ly-alpha line luminosities of high-redshift systems. Primordial
composition gas condenses within dark matter potential wells, forming objects
with masses and sizes comparable to the luminous regions of observed galaxies.
As expected, the energy radiated in this process is comparable to the
gravitational binding energy of the baryons, and the total cooling luminosity
of the galaxy population peaks at z ~= 2. However, in contrast to the classical
picture of gas cooling from the \sim 10^6 K virial temperature of a typical
dark matter halo, we find that most of the cooling radiation is emitted by gas
with T < 20,000 K. As a consequence, roughly 50% of this cooling radiation
emerges in the Ly-alpha line. While a galaxy's cooling luminosity is usually
smaller than the ionizing continuum luminosity of its young stars, the two are
comparable in the most massive systems, and the cooling radiation is produced
at larger radii, where the Ly-alpha photons are less likely to be extinguished
by dust. We suggest, in particular, that cooling radiation could explain the
two large (\sim 100 kpc), luminous (L_{Ly-alpha} \sim 10^{44} erg s^{-1})
``blobs'' of Ly-alpha emission found in Steidel et al.'s (1999) narrow band
survey of a z = 3 proto-cluster. Our simulations predict objects of the
observed luminosity at about the right space density, and radiative transfer
effects can account for the observed sizes and line widths. We discuss
observable tests of this hypothesis for the nature of the Ly-alpha blobs, and
we present predictions for the contribution of cooling radiation to the
Ly-alpha luminosity function of galaxies as a function of redshift.Comment: Submitted to ApJ. 28 pages including 9 PS figures. Version with color
figures available at
http://donald.astro.umass.edu/~fardal/papers/cooling/cooling.htm
The Chemical Compositions of the Type II Cepheids -- The BL Her and W Vir Variables
Abundance analyses from high-resolution optical spectra are presented for 19
Type II Cepheids in the Galactic field. The sample includes both short-period
(BL Her) and long-period (W Vir) stars. This is the first extensive abundance
analysis of these variables. The C, N, and O abundances with similar spreads
for the BL Her and W Vir show evidence for an atmosphere contaminated with
-process and CN-cycling products. A notable anomaly of the BL Her
stars is an overabundance of Na by a factor of about five relative to their
presumed initial abundances. This overabundance is not seen in the W Vir stars.
The abundance anomalies running from mild to extreme in W Vir stars but not
seen in the BL Her stars are attributed to dust-gas separation that provides an
atmosphere deficient in elements of high condensation temperature, notably Al,
Ca, Sc, Ti, and -process elements. Such anomalies have previously been seen
among RV Tau stars which represent a long-period extension of the variability
enjoyed by the Type II Cepheids. Comments are offered on how the contrasting
abundance anomalies of BL Her and W Vir stars may be explained in terms of the
stars' evolution from the blue horizontal branch.Comment: 41 pages including 11 figures and 4 tables; Accepted for publication
in Ap
Toward a better understanding of tool wear effect through a comparison between experiments and SPH numerical modelling of machining hard materials
The aim of this study is to improve the general understanding of tungsten carbide (WC–Co) tool wear under dry machining of the hard-to-cut titanium alloy Ti6Al4V. The chosen approach includes experimental and numerical tests. The experimental part is designed to identify wear mechanisms using cutting force measurements, scanning electron microscope observations and optical profilometer analysis. Machining tests were conducted in the orthogonal cutting framework and showed a strong evolution of the cutting forces and the chip profiles with tool wear. Then, a numerical method has been used in order to model the machining process with both new and worn tools. The use of smoothed particle hydrodynamics model (SPH model) as a numerical tool for a better understanding of the chip formation with worn tools is a key aspect of this work. The redicted chip morphology and the cutting force evolution with respect to the tool wear are qualitatively compared with experimental trends. The chip formation mechanisms during dry cutting process are shown to be quite dependent from the worn tool geometry. These mechanisms explain the high variation of the experimental and numerical feed force between new and worn tools
A Co-moving Coordinate System for Relativistic Hydrodynamics
The equations of relativistic hydrodynamics are transformed so that steps
forward in time preserves local simultaneity. In these variables, the
space-time coordinates of neighboring points on the mesh are simultaneous
according to co-moving observers. Aside from the time step varying as a
function of the location on the mesh, the local velocity gradient and the local
density then evolve according to non-relativistic equations of motion. Analytic
solutions are found for two one-dimensional cases with constant speed of sound.
One solution has a Gaussian density profile when mapped into the new
coordinates. That solution is analyzed for the effects of longitudinal
acceleration in relativistic heavy ion collisions at RHIC, especially in
regards to two-particle correlation measurements of the longitudinal size
The mass function
We present the mass functions for different mass estimators for a range of
cosmological models. We pay particular attention to how universal the mass
function is, and how it depends on the cosmology, halo identification and mass
estimator chosen. We investigate quantitatively how well we can relate observed
masses to theoretical mass functions.Comment: 14 pages, 12 figures, to appear in ApJ
The Evolution of the M-sigma Relation
(Abridged) We examine the evolution of the black hole mass - stellar velocity
dispersion (M-sigma) relation over cosmic time using simulations of galaxy
mergers that include feedback from supermassive black hole growth. We consider
mergers of galaxies varying the properties of the progenitors to match those
expected at redshifts z=0-6. We find that the slope of the resulting M-sigma
relation is the same at all redshifts considered. For the same feedback
efficiency that reproduces the observed amplitude of the M-sigma relation at
z=0, there is a weak redshift-dependence to the normalization that results from
an increasing velocity dispersion for a given galactic stellar mass. We develop
a formalism to connect redshift evolution in the M-sigma relation to the
scatter in the local relation at z=0. We show that the scatter in the local
relation places severe constraints on the redshift evolution of both the
normalization and slope of the M-sigma relation. Furthermore, we demonstrate
that cosmic downsizing introduces a black hole mass-dependent dispersion in the
M-sigma relation and that the skewness of the distribution about the locally
observed M-sigma relation is sensitive to redshift evolution in the
normalization and slope. In principle, these various diagnostics provide a
method for differentiating between theories for producing the M-sigma relation.
In agreement with existing constraints, our simulations imply that hierarchical
structure formation should produce the relation with small intrinsic scatter.Comment: 12 pages, 6 figures, version accepted by Ap
Smoothed Particle Hydrodynamics for Relativistic Heavy Ion Collisions
The method of smoothed particle hydrodynamics (SPH) is developped
appropriately for the study of relativistic heavy ion collision processes. In
order to describe the flow of a high energy but low baryon number density
fluid, the entropy is taken as the SPH base. We formulate the method in terms
of the variational principle. Several examples show that the method is very
promising for the study of hadronic flow in RHIC physics.Comment: 14 pages, 8figure
- …
