513 research outputs found

    Solving One Dimensional Scalar Conservation Laws by Particle Management

    Full text link
    We present a meshfree numerical solver for scalar conservation laws in one space dimension. Points representing the solution are moved according to their characteristic velocities. Particle interaction is resolved by purely local particle management. Since no global remeshing is required, shocks stay sharp and propagate at the correct speed, while rarefaction waves are created where appropriate. The method is TVD, entropy decreasing, exactly conservative, and has no numerical dissipation. Difficulties involving transonic points do not occur, however inflection points of the flux function pose a slight challenge, which can be overcome by a special treatment. Away from shocks the method is second order accurate, while shocks are resolved with first order accuracy. A postprocessing step can recover the second order accuracy. The method is compared to CLAWPACK in test cases and is found to yield an increase in accuracy for comparable resolutions.Comment: 15 pages, 6 figures. Submitted to proceedings of the Fourth International Workshop Meshfree Methods for Partial Differential Equation

    Tidal spin-up of stars in dense stellar cusps around massive black holes

    Get PDF
    We show that main-sequence stars in dense stellar cusps around massive black holes are likely to rotate at a significant fraction of the centrifugal breakup velocity due to spin-up by hyperbolic tidal encounters. We use realistic stellar structure models to calculate analytically the tidal spin-up in soft encounters, and extrapolate these results to close and penetrating collisions using smoothed particle hydrodynamics simulations. We find that the spin-up falls off only slowly with distance from the black hole because the increased tidal coupling in slower collisions at larger distances compensates for the decrease in the stellar density. We apply our results to the stars near the massive black hole in the Galactic Center. Over their lifetime, ~1 Msol main sequence stars in the inner 0.3 pc of the Galactic Center are spun-up on average to ~10%--30% of the centrifugal breakup limit. Such rotation is ~20--60 times higher than is usual for such stars and may affect their subsequent evolution and their observed properties.Comment: 25 pages, 7 figures. Submitted to Ap

    COSMOS: A Hybrid N-Body/Hydrodynamics Code for Cosmological Problems

    Get PDF
    We describe a new hybrid N-body/hydrodynamical code based on the particle-mesh (PM) method and the piecewise-parabolic method (PPM) for use in solving problems related to the evolution of large-scale structure, galaxy clusters, and individual galaxies. The code, named COSMOS, possesses several new features which distinguish it from other PM-PPM codes. In particular, to solve the Poisson equation we have written a new multigrid solver which can determine the gravitational potential of isolated matter distributions and which properly takes into account the finite-volume discretization required by PPM. All components of the code are constructed to work with a nonuniform mesh, preserving second-order spatial differences. The PPM code uses vacuum boundary conditions for isolated problems, preventing inflows when appropriate. The PM code uses a second-order variable-timestep time integration scheme. Radiative cooling and cosmological expansion terms are included. COSMOS has been implemented for parallel computers using the Parallel Virtual Machine (PVM) library, and it features a modular design which simplifies the addition of new physics and the configuration of the code for different types of problems. We discuss the equations solved by COSMOS and describe the algorithms used, with emphasis on these features. We also discuss the results of tests we have performed to establish that COSMOS works and to determine its range of validity.Comment: 43 pages, 14 figures, submitted to ApJS and revised according to referee's comment

    Cooling Radiation and the Lyman-alpha Luminosity of Forming Galaxies

    Get PDF
    We examine the cooling radiation from forming galaxies in hydrodynamic simulations of the LCDM model (cold dark matter with a cosmological constant), focusing on the Ly-alpha line luminosities of high-redshift systems. Primordial composition gas condenses within dark matter potential wells, forming objects with masses and sizes comparable to the luminous regions of observed galaxies. As expected, the energy radiated in this process is comparable to the gravitational binding energy of the baryons, and the total cooling luminosity of the galaxy population peaks at z ~= 2. However, in contrast to the classical picture of gas cooling from the \sim 10^6 K virial temperature of a typical dark matter halo, we find that most of the cooling radiation is emitted by gas with T < 20,000 K. As a consequence, roughly 50% of this cooling radiation emerges in the Ly-alpha line. While a galaxy's cooling luminosity is usually smaller than the ionizing continuum luminosity of its young stars, the two are comparable in the most massive systems, and the cooling radiation is produced at larger radii, where the Ly-alpha photons are less likely to be extinguished by dust. We suggest, in particular, that cooling radiation could explain the two large (\sim 100 kpc), luminous (L_{Ly-alpha} \sim 10^{44} erg s^{-1}) ``blobs'' of Ly-alpha emission found in Steidel et al.'s (1999) narrow band survey of a z = 3 proto-cluster. Our simulations predict objects of the observed luminosity at about the right space density, and radiative transfer effects can account for the observed sizes and line widths. We discuss observable tests of this hypothesis for the nature of the Ly-alpha blobs, and we present predictions for the contribution of cooling radiation to the Ly-alpha luminosity function of galaxies as a function of redshift.Comment: Submitted to ApJ. 28 pages including 9 PS figures. Version with color figures available at http://donald.astro.umass.edu/~fardal/papers/cooling/cooling.htm

    The Chemical Compositions of the Type II Cepheids -- The BL Her and W Vir Variables

    Full text link
    Abundance analyses from high-resolution optical spectra are presented for 19 Type II Cepheids in the Galactic field. The sample includes both short-period (BL Her) and long-period (W Vir) stars. This is the first extensive abundance analysis of these variables. The C, N, and O abundances with similar spreads for the BL Her and W Vir show evidence for an atmosphere contaminated with 3α3\alpha-process and CN-cycling products. A notable anomaly of the BL Her stars is an overabundance of Na by a factor of about five relative to their presumed initial abundances. This overabundance is not seen in the W Vir stars. The abundance anomalies running from mild to extreme in W Vir stars but not seen in the BL Her stars are attributed to dust-gas separation that provides an atmosphere deficient in elements of high condensation temperature, notably Al, Ca, Sc, Ti, and ss-process elements. Such anomalies have previously been seen among RV Tau stars which represent a long-period extension of the variability enjoyed by the Type II Cepheids. Comments are offered on how the contrasting abundance anomalies of BL Her and W Vir stars may be explained in terms of the stars' evolution from the blue horizontal branch.Comment: 41 pages including 11 figures and 4 tables; Accepted for publication in Ap

    Toward a better understanding of tool wear effect through a comparison between experiments and SPH numerical modelling of machining hard materials

    Get PDF
    The aim of this study is to improve the general understanding of tungsten carbide (WC–Co) tool wear under dry machining of the hard-to-cut titanium alloy Ti6Al4V. The chosen approach includes experimental and numerical tests. The experimental part is designed to identify wear mechanisms using cutting force measurements, scanning electron microscope observations and optical profilometer analysis. Machining tests were conducted in the orthogonal cutting framework and showed a strong evolution of the cutting forces and the chip profiles with tool wear. Then, a numerical method has been used in order to model the machining process with both new and worn tools. The use of smoothed particle hydrodynamics model (SPH model) as a numerical tool for a better understanding of the chip formation with worn tools is a key aspect of this work. The redicted chip morphology and the cutting force evolution with respect to the tool wear are qualitatively compared with experimental trends. The chip formation mechanisms during dry cutting process are shown to be quite dependent from the worn tool geometry. These mechanisms explain the high variation of the experimental and numerical feed force between new and worn tools

    A Co-moving Coordinate System for Relativistic Hydrodynamics

    Get PDF
    The equations of relativistic hydrodynamics are transformed so that steps forward in time preserves local simultaneity. In these variables, the space-time coordinates of neighboring points on the mesh are simultaneous according to co-moving observers. Aside from the time step varying as a function of the location on the mesh, the local velocity gradient and the local density then evolve according to non-relativistic equations of motion. Analytic solutions are found for two one-dimensional cases with constant speed of sound. One solution has a Gaussian density profile when mapped into the new coordinates. That solution is analyzed for the effects of longitudinal acceleration in relativistic heavy ion collisions at RHIC, especially in regards to two-particle correlation measurements of the longitudinal size

    The mass function

    Get PDF
    We present the mass functions for different mass estimators for a range of cosmological models. We pay particular attention to how universal the mass function is, and how it depends on the cosmology, halo identification and mass estimator chosen. We investigate quantitatively how well we can relate observed masses to theoretical mass functions.Comment: 14 pages, 12 figures, to appear in ApJ

    The Evolution of the M-sigma Relation

    Full text link
    (Abridged) We examine the evolution of the black hole mass - stellar velocity dispersion (M-sigma) relation over cosmic time using simulations of galaxy mergers that include feedback from supermassive black hole growth. We consider mergers of galaxies varying the properties of the progenitors to match those expected at redshifts z=0-6. We find that the slope of the resulting M-sigma relation is the same at all redshifts considered. For the same feedback efficiency that reproduces the observed amplitude of the M-sigma relation at z=0, there is a weak redshift-dependence to the normalization that results from an increasing velocity dispersion for a given galactic stellar mass. We develop a formalism to connect redshift evolution in the M-sigma relation to the scatter in the local relation at z=0. We show that the scatter in the local relation places severe constraints on the redshift evolution of both the normalization and slope of the M-sigma relation. Furthermore, we demonstrate that cosmic downsizing introduces a black hole mass-dependent dispersion in the M-sigma relation and that the skewness of the distribution about the locally observed M-sigma relation is sensitive to redshift evolution in the normalization and slope. In principle, these various diagnostics provide a method for differentiating between theories for producing the M-sigma relation. In agreement with existing constraints, our simulations imply that hierarchical structure formation should produce the relation with small intrinsic scatter.Comment: 12 pages, 6 figures, version accepted by Ap

    Smoothed Particle Hydrodynamics for Relativistic Heavy Ion Collisions

    Full text link
    The method of smoothed particle hydrodynamics (SPH) is developped appropriately for the study of relativistic heavy ion collision processes. In order to describe the flow of a high energy but low baryon number density fluid, the entropy is taken as the SPH base. We formulate the method in terms of the variational principle. Several examples show that the method is very promising for the study of hadronic flow in RHIC physics.Comment: 14 pages, 8figure
    corecore