599 research outputs found

    Solar neutrinos and the influence of radiative opacities on solar models

    Get PDF
    Use of new radiative opacities based on the hot Thomas-Fermi model of the atom yields a predicted solar neutrino flux which is still considerably larger than the flux observed in Davis's Cl-37 experiment

    New, Highly Accurate Propagator for the Linear and Nonlinear Schr\"odinger Equation

    Full text link
    A propagation method for the time dependent Schr\"odinger equation was studied leading to a general scheme of solving ode type equations. Standard space discretization of time-dependent pde's usually results in system of ode's of the form u_t -Gu = s where G is a operator (matrix) and u is a time-dependent solution vector. Highly accurate methods, based on polynomial approximation of a modified exponential evolution operator, had been developed already for this type of problems where G is a linear, time independent matrix and s is a constant vector. In this paper we will describe a new algorithm for the more general case where s is a time-dependent r.h.s vector. An iterative version of the new algorithm can be applied to the general case where G depends on t or u. Numerical results for Schr\"odinger equation with time-dependent potential and to non-linear Schr\"odinger equation will be presented.Comment: 14 page

    Solar spin down and neutrino fluxes

    Get PDF
    Effects of core spin-down process on neutrino flux in solar evolution theor

    A Chebychev propagator with iterative time ordering for explicitly time-dependent Hamiltonians

    Full text link
    A propagation method for time-dependent Schr\"odinger equations with an explicitly time-dependent Hamiltonian is developed where time ordering is achieved iteratively. The explicit time-dependence of the time-dependent Schr\"odinger equation is rewritten as an inhomogeneous term. At each step of the iteration, the resulting inhomogeneous Schr\"odinger equation is solved with the Chebychev propagation scheme presented in J. Chem. Phys. 130, 124108 (2009). The iteratively time-ordering Chebychev propagator is shown to be robust, efficient and accurate and compares very favorably to all other available propagation schemes

    Evolution of low-mass metal-free stars including effects of diffusion and external pollution

    Full text link
    We investigate the evolution of low-mass metal-free Population III stars. Emphasis is laid upon the question of internal and external sources for CNO-elements, which - if present in sufficient amounts in the hydrogen-burning regions - lead to a strong modification of the stars' evolutionary behavior. For the production of carbon due to nuclear processes inside the stars, we use an extended nuclear network, demonstrating that hot pp-chains do not suffice to produce enough carbon or are less effective than the triple3-alpha-process. As an external source of CNO-elements we test the efficiency of pollution by a nearby massive star combined with particle diffusion. For all cases investigated, the additional metals fail to reach nuclear burning regions before deep convection on the Red Giant Branch obliterates the previous evolution. The surface abundance history of the polluted Pop III stars is presented. The possibilities to discriminate between a Pop II and a polluted Pop III field star are also discussed.Comment: Accepted for publication in Ap

    Quantum Dynamics of Spin Wave Propagation Through Domain Walls

    Get PDF
    Through numerical solution of the time-dependent Schrodinger equation, we demonstrate that magnetic chains with uniaxial anisotropy support stable structures, separating ferromagnetic domains of opposite magnetization. These structures, domain walls in a quantum system, are shown to remain stable if they interact with a spin wave. We find that a domain wall transmits the longitudinal component of the spin excitations only. Our results suggests that continuous, classical spin models described by LLG equation cannot be used to describe spin wave-domain wall interaction in microscopic magnetic systems

    Evolution and Nucleosynthesis of Zero Metal Intermediate Mass Stars

    Get PDF
    New stellar models with mass ranging between 4 and 8 Mo, Z=0 and Y=0.23 are presented. The models have been evolved from the pre Main Sequence up to the Asymptotic Giant Branch (AGB). At variance with previous claims, we find that these updated stellar models do experience thermal pulses in the AGB phase. In particular we show that: a) in models with mass larger than 6 Mo, the second dredge up is able to raise the CNO abundance in the envelope enough to allow a "normal" AGB evolution, in the sense that the thermal pulses and the third dredge up settle on; b) in models of lower mass, the efficiency of the CNO cycle in the H-burning shell is controlled by the carbon produced locally via the 3alpha reactions. Nevertheless the He-burning shell becomes thermally unstable after the early AGB. The expansion of the overlying layers induced by these weak He-shell flashes is not sufficient by itself to allow a deep penetration of the convective envelope. However, immediately after that, the maximum luminosity of the He flash is attained and a convective shell systematically forms at the base of the H-rich envelope. The innermost part of this convective shell probably overlaps the underlying C-rich region left by the inter-shell convection during the thermal pulse, so that fresh carbon is dredged up in a "hot" H-rich environment and a H flash occurs. This flash favours the expansion of the outermost layers already started by the weak thermal pulse and a deeper penetration of the convective envelope takes place. Then, the carbon abundance in the envelope rises to a level high enough that the further evolution of these models closely resembles that of more metal rich AGB stars. These stars provide an important source of primary carbon and nitrogen.Comment: 28 pages, 5 tables and 17 figures. Accepted for publication in Ap

    The Many Faces of a Character

    Full text link
    We prove an identity between three infinite families of polynomials which are defined in terms of `bosonic', `fermionic', and `one-dimensional configuration' sums. In the limit where the polynomials become infinite series, they give different-looking expressions for the characters of the two integrable representations of the affine su(2)su(2) algebra at level one. We conjecture yet another fermionic sum representation for the polynomials which is constructed directly from the Bethe-Ansatz solution of the Heisenberg spin chain.Comment: 14/9 pages in harvmac, Tel-Aviv preprint TAUP 2125-9

    Uniform Contribution of Supernova Explosions to the Chemical Enrichment of Abell 3112 out to R 200

    Get PDF
    The spatial distribution of the metals residing in the intra-cluster medium (ICM) of galaxy clusters records all the information on a cluster's nucleosynthesis and chemical enrichment history. We present measurements from a total of 1.2 Ms Suzaku XIS and 72 ks Chandra observations of the cool-core galaxy cluster Abell 3112 out to its virial radius (~1470 kpc). We find that the ratio of the observed supernova type Ia explosions to the total supernova explosions has a uniform distribution at a level of 12%–16% out to the cluster's virial radius. The observed fraction of type Ia supernova explosions is in agreement with the corresponding fraction found in our Galaxy and the chemical enrichment of our Galaxy. The non-varying supernova enrichment suggests that the ICM in cluster outskirts was enriched by metals at an early stage before the cluster itself was formed during a period of intense star formation activity. Additionally, we find that the 2D delayed detonation model CDDT produce significantly worse fits to the X-ray spectra compared to simple 1D W7 models. This is due to the relative overestimate of Si, and the underestimate of Mg in these models with respect to the measured abundances.United States. National Aeronautics and Space Administration (NNX09AV65G)United States. National Aeronautics and Space Administration (NNX10AV02G

    An Assessment of Dynamical Mass Constraints on Pre-Main Sequence Evolutionary Tracks

    Get PDF
    [abridged] We have assembled a database of stars having both masses determined from measured orbital dynamics and sufficient spectral and photometric information for their placement on a theoretical HR diagram. Our sample consists of 115 low mass (M < 2.0 Msun) stars, 27 pre-main sequence and 88 main sequence. We use a variety of available pre-main sequence evolutionary calculations to test the consistency of predicted stellar masses with dynamically determined masses. Despite substantial improvements in model physics over the past decade, large systematic discrepancies still exist between empirical and theoretically derived masses. For main-sequence stars, all models considered predict masses consistent with dynamical values above 1.2 Msun, some models predict consistent masses at solar or slightly lower masses, and no models predict consistent masses below 0.5 Msun but rather all models systematically under-predict such low masses by 5-20%. The failure at low masses stems from the poor match of most models to the empirical main-sequence below temperatures of 3800 K where molecules become the dominant source of opacity and convection is the dominant mode of energy transport. For the pre-main sequence sample we find similar trends. There is generally good agreement between predicted and dynamical masses above 1.2 Msun for all models. Below 1.2 Msun and down to 0.3 Msun (the lowest mass testable) most evolutionary models systematically under-predict the dynamically determined masses by 10-30% on average with the Lyon group models (e.g. Baraffe et al. 1998) predicting marginally consistent masses *in the mean* though with large scatter.Comment: accepted for publication in ApJ (2004
    corecore