21,002 research outputs found

    Essential self-adjointness in one-loop quantum cosmology

    Full text link
    The quantization of closed cosmologies makes it necessary to study squared Dirac operators on closed intervals and the corresponding quantum amplitudes. This paper proves self-adjointness of these second-order elliptic operators.Comment: 14 pages, plain Tex. An Erratum has been added to the end, which corrects section

    Boundary Operators in Quantum Field Theory

    Get PDF
    The fundamental laws of physics can be derived from the requirement of invariance under suitable classes of transformations on the one hand, and from the need for a well-posed mathematical theory on the other hand. As a part of this programme, the present paper shows under which conditions the introduction of pseudo-differential boundary operators in one-loop Euclidean quantum gravity is compatible both with their invariance under infinitesimal diffeomorphisms and with the requirement of a strongly elliptic theory. Suitable assumptions on the kernel of the boundary operator make it therefore possible to overcome problems resulting from the choice of purely local boundary conditions.Comment: 23 pages, plain Tex. The revised version contains a new section, and the presentation has been improve

    Quantized Maxwell Theory in a Conformally Invariant Gauge

    Get PDF
    Maxwell theory can be studied in a gauge which is invariant under conformal rescalings of the metric, and first proposed by Eastwood and Singer. This paper studies the corresponding quantization in flat Euclidean 4-space. The resulting ghost operator is a fourth-order elliptic operator, while the operator P on perturbations of the potential is a sixth-order elliptic operator. The operator P may be reduced to a second-order non-minimal operator if a dimensionless gauge parameter tends to infinity. Gauge-invariant boundary conditions are obtained by setting to zero at the boundary the whole set of perturbations of the potential, jointly with ghost perturbations and their normal derivative. This is made possible by the fourth-order nature of the ghost operator. An analytic representation of the ghost basis functions is also obtained.Comment: 8 pages, plain Tex. In this revised version, the calculation of ghost basis functions has been amended, and the presentation has been improve

    Euclidean Maxwell Theory in the Presence of Boundaries. II

    Get PDF
    Zeta-function regularization is applied to complete a recent analysis of the quantized electromagnetic field in the presence of boundaries. The quantum theory is studied by setting to zero on the boundary the magnetic field, the gauge-averaging functional and hence the Faddeev-Popov ghost field. Electric boundary conditions are also studied. On considering two gauge functionals which involve covariant derivatives of the 4-vector potential, a series of detailed calculations shows that, in the case of flat Euclidean 4-space bounded by two concentric 3-spheres, one-loop quantum amplitudes are gauge independent and their mode-by-mode evaluation agrees with the covariant formulae for such amplitudes and coincides for magnetic or electric boundary conditions. By contrast, if a single 3-sphere boundary is studied, one finds some inconsistencies, i.e. gauge dependence of the amplitudes.Comment: 24 pages, plain-tex, recently appearing in Classical and Quantum Gravity, volume 11, pages 2939-2950, December 1994. The authors apologize for the delay in circulating the file, due to technical problems now fixe

    Single electron transistor strongly coupled to vibrations: Counting Statistics and Fluctuation Theorem

    Get PDF
    Using a simple quantum master equation approach, we calculate the Full Counting Statistics of a single electron transistor strongly coupled to vibrations. The Full Counting Statistics contains both the statistics of integrated particle and energy currents associated to the transferred electrons and phonons. A universal as well as an effective fluctuation theorem are derived for the general case where the various reservoir temperatures and chemical potentials are different. The first relates to the entropy production generated in the junction while the second reveals internal information of the system. The model recovers Franck-Condon blockade and potential applications to non-invasive molecular spectroscopy are discussed.Comment: extended discussion, to appear in NJ

    On the Zero-Point Energy of a Conducting Spherical Shell

    Get PDF
    The zero-point energy of a conducting spherical shell is evaluated by imposing boundary conditions on the potential, and on the ghost fields. The scheme requires that temporal and tangential components of perturbations of the potential should vanish at the boundary, jointly with the gauge-averaging functional, first chosen of the Lorenz type. Gauge invariance of such boundary conditions is then obtained provided that the ghost fields vanish at the boundary. Normal and longitudinal modes of the potential obey an entangled system of eigenvalue equations, whose solution is a linear combination of Bessel functions under the above assumptions, and with the help of the Feynman choice for a dimensionless gauge parameter. Interestingly, ghost modes cancel exactly the contribution to the Casimir energy resulting from transverse and temporal modes of the potential, jointly with the decoupled normal mode of the potential. Moreover, normal and longitudinal components of the potential for the interior and the exterior problem give a result in complete agreement with the one first found by Boyer, who studied instead boundary conditions involving TE and TM modes of the electromagnetic field. The coupled eigenvalue equations for perturbative modes of the potential are also analyzed in the axial gauge, and for arbitrary values of the gauge parameter. The set of modes which contribute to the Casimir energy is then drastically changed, and comparison with the case of a flat boundary sheds some light on the key features of the Casimir energy in non-covariant gauges.Comment: 29 pages, Revtex, revised version. In this last version, a new section has been added, devoted to the zero-point energy of a conducting spherical shell in the axial gauge. A second appendix has also been include

    Excess entropy, Diffusivity and Structural Order in liquids with water-like anomalies

    Full text link
    The excess entropy, Se, defined as the difference between the entropies of the liquid and the ideal gas under identical density and temperature conditions, is shown to be the critical quantity connecting the structural, diffusional and density anomalies in water-like liquids. Based on simulations of silica and the two-scale ramp liquids, water-like density and diffusional anomalies can be seen as consequences of a characteristic non-monotonic density dependence of Se. The relationship between excess entropy, the order metrics and the structural anomaly can be understood using a pair correlation approximation to Se.Comment: 9 pages, 5 figues in ps forma

    A New Family of Gauges in Linearized General Relativity

    Get PDF
    For vacuum Maxwell theory in four dimensions, a supplementary condition exists (due to Eastwood and Singer) which is invariant under conformal rescalings of the metric, in agreement with the conformal symmetry of the Maxwell equations. Thus, starting from the de Donder gauge, which is not conformally invariant but is the gravitational counterpart of the Lorenz gauge, one can consider, led by formal analogy, a new family of gauges in general relativity, which involve fifth-order covariant derivatives of metric perturbations. The admissibility of such gauges in the classical theory is first proven in the cases of linearized theory about flat Euclidean space or flat Minkowski space-time. In the former, the general solution of the equation for the fulfillment of the gauge condition after infinitesimal diffeomorphisms involves a 3-harmonic 1-form and an inverse Fourier transform. In the latter, one needs instead the kernel of powers of the wave operator, and a contour integral. The analysis is also used to put restrictions on the dimensionless parameter occurring in the DeWitt supermetric, while the proof of admissibility is generalized to a suitable class of curved Riemannian backgrounds. Eventually, a non-local construction is obtained of the tensor field which makes it possible to achieve conformal invariance of the above gauges.Comment: 28 pages, plain Tex. In the revised version, sections 4 and 5 are completely ne

    One-Loop Effective Action for Euclidean Maxwell Theory on Manifolds with Boundary

    Get PDF
    This paper studies the one-loop effective action for Euclidean Maxwell theory about flat four-space bounded by one three-sphere, or two concentric three-spheres. The analysis relies on Faddeev-Popov formalism and ζ\zeta-function regularization, and the Lorentz gauge-averaging term is used with magnetic boundary conditions. The contributions of transverse, longitudinal and normal modes of the electromagnetic potential, jointly with ghost modes, are derived in detail. The most difficult part of the analysis consists in the eigenvalue condition given by the determinant of a 2×22 \times 2 or 4×44 \times 4 matrix for longitudinal and normal modes. It is shown that the former splits into a sum of Dirichlet and Robin contributions, plus a simpler term. This is the quantum cosmological case. In the latter case, however, when magnetic boundary conditions are imposed on two bounding three-spheres, the determinant is more involved. Nevertheless, it is evaluated explicitly as well. The whole analysis provides the building block for studying the one-loop effective action in covariant gauges, on manifolds with boundary. The final result differs from the value obtained when only transverse modes are quantized, or when noncovariant gauges are used.Comment: 25 pages, Revte
    corecore