33 research outputs found

    ADAM17-Mediated Processing of TNF-α Expressed by Antiviral Effector CD8+ T Cells Is Required for Severe T-Cell-Mediated Lung Injury

    Get PDF
    Influenza infection in humans evokes a potent CD8+ T-cell response, which is important for clearance of the virus but may also exacerbate pulmonary pathology. We have previously shown in mice that CD8+ T-cell expression of TNF-a is required for severe and lethal lung injury following recognition of an influenza antigen expressed by alveolar epithelial cells. Since TNF-a is first expressed as a transmembrane protein that is then proteolytically processed to release a soluble form, we sought to characterize the role of TNF-a processing in CD8+ T-cell-mediated injury. In this study we observed that inhibition of ADAM17-mediated processing of TNF-a by CD8+ T cells significantly attenuated the diffuse alveolar damage that occurs after T-cell transfer, resulting in enhanced survival. This was due in part to diminished chemokine expression, as TNF-aprocessing was required for lung epithelial cell expression of CXCL2 and the subsequent inflammatory infiltration. We confirmed the importance of CXCL2 expression in acute lung injury by transferring influenza-specific CD8+ T cells into transgenic mice lacking CXCR2. These mice exhibited reduced airway infiltration, attenuated lung injury, and enhanced survival. Theses studies describe a critical role for TNF-a processing by CD8+ T cells in the initiation and severity of acute lung injury, which may have important implications for limiting immunopathology during influenza infection and other human infectious or inflammatory diseases

    Improved monitoring of clinical response in Systemic Lupus Erythematosus by longitudinal trend in soluble vascular cell adhesion molecule-1

    Get PDF
    This work was funded by Arthritis Research UK. MJL holds an Arthritis Research UK Clinician Scientist Fellowship (19631), and was previously supported by the St Thomas’ Lupus Trust. The study received support from the National Institute for Health Research (NIHR)-funded Flow Cytometry Core Facility and the Biomedical Research Centre based at Guy’s & St. Thomas’ National Health Service (NHS) Foundation Trust, in partnership with King’s College London

    Injection of embryonic stem cell derived macrophages ameliorates fibrosis in a murine model of liver injury

    Get PDF
    Abstract The following ethical statement was added to the end of the Methods section in the HTML and PDF versions of this Article: The animal experiments were approved and conducted in accordance to the UK Home Office regulations (Project Licence No.70/7847). Erratum to: doi: 10.1038/s41536-017-0017-

    CX3CR1 is a gatekeeper for intestinal barrier integrity in mice: Limiting steatohepatitis by maintaining intestinal homeostasis.

    Get PDF
    Nonalcoholic fatty liver disease is seen as the hepatic manifestation of the metabolic syndrome and represents the most common liver disease in Western societies. The G protein-coupled chemokine receptor CX3CR1 plays a central role in several metabolic syndrome-related disease manifestations and is involved in maintaining intestinal homeostasis. Because diet-induced intestinal dysbiosis is a driver for nonalcoholic fatty liver disease, we hypothesized that CX3CR1 may influence the development of steatohepatitis. In two independent models of diet-induced steatohepatitis (high-fat diet and methionine/choline-deficient diet), CX3CR1 protected mice from excessive hepatic steatosis and inflammation, as well as systemic glucose intolerance. Lack of Cx3cr1 expression was associated with significantly altered intestinal microbiota composition, which was linked to an impaired intestinal barrier. Concomitantly, endotoxin levels in portal serum and inflammatory macrophages in liver were increased in Cx3cr1(-/-) mice, indicating an increased inflammatory response. Depletion of intestinal microbiota by administration of broad-spectrum antibiotics suppressed the number of infiltrating macrophages and promoted macrophage polarization in liver. Consequently, antibiotic-treated mice demonstrated a marked improvement of steatohepatitis. Conclusion: Microbiota-mediated activation of the innate immune responses through CX3CR1 is crucial for controlling steatohepatitis progression, which recognizes CX3CR1 as an essential gatekeeper in this scenario. (Hepatology 2015;62:1405-1416

    Allergy-Specific Phenome-Wide Association Study For Immunogenes In Turkish Children

    No full text
    To dissect the role of immunogenetics in allergy and asthma, we performed a phenome-wide association study in 974 Turkish children selected from a cross-sectional study conducted using ISAAC (International Study of Asthma and Allergies in Children) Phase II tools. We investigated 9 loci involved in different immune functions (ADAM33, ADRB2, CD14, IL13, IL4, IL4R, MS4A2, SERPINE1, and TNF) with respect to 116 traits assessed through blood tests, hypertonic saline challenge tests, questionnaires, and skin prick tests. Multiple associations were observed for ADAM33: rs2280090 was associated with reduced MEF240% (i.e., the ratio of Mean Expiratory Flow after 240s of hypertonic saline inhalation with respect to the age-and ancestry-matched reference value) and with an increased risk of allergic bronchitis (p = 1.77*10(-4) and p = 7.94*10(-4), respectively); rs3918396 was associated with wheezing and eczema comorbidity (p = 3.41*10(-4)). IL4 rs2243250 was associated with increased FEV240 (Forced Expiratory Flow Volume after 240s of hypertonic saline inhalation; p = 4.81*10(-4)) and CD14 rs2569190 was associated with asthma diagnosis (p = 1.36*10(-3)). ADAM33 and IL4 appeared to play a role in the processes linked to allergic airway inflammation and lung function. Due to its association with wheezing and eczema comorbidity, ADAM33 may also be involved in the atopic march.WoSScopu
    corecore