2,087 research outputs found

    A rigidity theorem for nonvacuum initial data

    Get PDF
    In this note we prove a theorem on non-vacuum initial data for general relativity. The result presents a ``rigidity phenomenon'' for the extrinsic curvature, caused by the non-positive scalar curvature. More precisely, we state that in the case of asymptotically flat non-vacuum initial data if the metric has everywhere non-positive scalar curvature then the extrinsic curvature cannot be compactly supported.Comment: This is an extended and published version: LaTex, 10 pages, no figure

    Geometrical Hyperbolic Systems for General Relativity and Gauge Theories

    Full text link
    The evolution equations of Einstein's theory and of Maxwell's theory---the latter used as a simple model to illustrate the former--- are written in gauge covariant first order symmetric hyperbolic form with only physically natural characteristic directions and speeds for the dynamical variables. Quantities representing gauge degrees of freedom [the spatial shift vector βi(t,xj)\beta^{i}(t,x^{j}) and the spatial scalar potential ϕ(t,xj)\phi(t,x^{j}), respectively] are not among the dynamical variables: the gauge and the physical quantities in the evolution equations are effectively decoupled. For example, the gauge quantities could be obtained as functions of (t,xj)(t,x^{j}) from subsidiary equations that are not part of the evolution equations. Propagation of certain (``radiative'') dynamical variables along the physical light cone is gauge invariant while the remaining dynamical variables are dragged along the axes orthogonal to the spacelike time slices by the propagating variables. We obtain these results by (1)(1) taking a further time derivative of the equation of motion of the canonical momentum, and (2)(2) adding a covariant spatial derivative of the momentum constraints of general relativity (Lagrange multiplier βi\beta^{i}) or of the Gauss's law constraint of electromagnetism (Lagrange multiplier ϕ\phi). General relativity also requires a harmonic time slicing condition or a specific generalization of it that brings in the Hamiltonian constraint when we pass to first order symmetric form. The dynamically propagating gravity fields straightforwardly determine the ``electric'' or ``tidal'' parts of the Riemann tensor.Comment: 24 pages, latex, no figure

    Einstein and Yang-Mills theories in hyperbolic form without gauge-fixing

    Full text link
    The evolution of physical and gauge degrees of freedom in the Einstein and Yang-Mills theories are separated in a gauge-invariant manner. We show that the equations of motion of these theories can always be written in flux-conservative first-order symmetric hyperbolic form. This dynamical form is ideal for global analysis, analytic approximation methods such as gauge-invariant perturbation theory, and numerical solution.Comment: 12 pages, revtex3.0, no figure

    Geometrically motivated hyperbolic coordinate conditions for numerical relativity: Analysis, issues and implementations

    Full text link
    We study the implications of adopting hyperbolic driver coordinate conditions motivated by geometrical considerations. In particular, conditions that minimize the rate of change of the metric variables. We analyze the properties of the resulting system of equations and their effect when implementing excision techniques. We find that commonly used coordinate conditions lead to a characteristic structure at the excision surface where some modes are not of outflow-type with respect to any excision boundary chosen inside the horizon. Thus, boundary conditions are required for these modes. Unfortunately, the specification of these conditions is a delicate issue as the outflow modes involve both gauge and main variables. As an alternative to these driver equations, we examine conditions derived from extremizing a scalar constructed from Killing's equation and present specific numerical examples.Comment: 9 figure

    Cosmological spacetimes not covered by a constant mean curvature slicing

    Get PDF
    We show that there exist maximal globally hyperbolic solutions of the Einstein-dust equations which admit a constant mean curvature Cauchy surface, but are not covered by a constant mean curvature foliation.Comment: 11 page

    A Gluing Construction Regarding Point Particles in General Relativity

    Full text link
    We develop a gluing construction which adds scaled and truncated asymptotically Euclidean solutions of the Einstein constraint equations to compact solutions with potentially non-trivial cosmological constants. The result is a one-parameter family of initial data which has ordinary and scaled "point-particle" limits analogous to those of Gralla and Wald ("A rigorous derivation of gravitational self-force," Class. Quantum Grav. 2008). In particular, we produce examples of initial data which generalize Schwarzschild - de Sitter initial data and gluing theorems of IMP-type

    On completeness of orbits of Killing vector fields

    Get PDF
    A Theorem is proved which reduces the problem of completeness of orbits of Killing vector fields in maximal globally hyperbolic, say vacuum, space--times to some properties of the orbits near the Cauchy surface. In particular it is shown that all Killing orbits are complete in maximal developements of asymptotically flat Cauchy data, or of Cauchy data prescribed on a compact manifold. This result gives a significant strengthening of the uniqueness theorems for black holes.Comment: 16 pages, Latex, preprint NSF-ITP-93-4

    Asymptotic gluing of asymptotically hyperbolic solutions to the Einstein constraint equations

    Full text link
    We show that asymptotically hyperbolic solutions of the Einstein constraint equations with constant mean curvature can be glued in such a way that their asymptotic regions are connected.Comment: 37 pages; 2 figure

    Constant mean curvature solutions of the Einstein-scalar field constraint equations on asymptotically hyperbolic manifolds

    Full text link
    We follow the approach employed by Y. Choquet-Bruhat, J. Isenberg and D. Pollack in the case of closed manifolds and establish existence and non-existence results for the Einstein-scalar field constraint equations on asymptotically hyperbolic manifolds.Comment: 15 page
    corecore