2,087 research outputs found
A rigidity theorem for nonvacuum initial data
In this note we prove a theorem on non-vacuum initial data for general
relativity. The result presents a ``rigidity phenomenon'' for the extrinsic
curvature, caused by the non-positive scalar curvature.
More precisely, we state that in the case of asymptotically flat non-vacuum
initial data if the metric has everywhere non-positive scalar curvature then
the extrinsic curvature cannot be compactly supported.Comment: This is an extended and published version: LaTex, 10 pages, no
figure
Geometrical Hyperbolic Systems for General Relativity and Gauge Theories
The evolution equations of Einstein's theory and of Maxwell's theory---the
latter used as a simple model to illustrate the former--- are written in gauge
covariant first order symmetric hyperbolic form with only physically natural
characteristic directions and speeds for the dynamical variables. Quantities
representing gauge degrees of freedom [the spatial shift vector
and the spatial scalar potential ,
respectively] are not among the dynamical variables: the gauge and the physical
quantities in the evolution equations are effectively decoupled. For example,
the gauge quantities could be obtained as functions of from
subsidiary equations that are not part of the evolution equations. Propagation
of certain (``radiative'') dynamical variables along the physical light cone is
gauge invariant while the remaining dynamical variables are dragged along the
axes orthogonal to the spacelike time slices by the propagating variables. We
obtain these results by taking a further time derivative of the equation
of motion of the canonical momentum, and adding a covariant spatial
derivative of the momentum constraints of general relativity (Lagrange
multiplier ) or of the Gauss's law constraint of electromagnetism
(Lagrange multiplier ). General relativity also requires a harmonic time
slicing condition or a specific generalization of it that brings in the
Hamiltonian constraint when we pass to first order symmetric form. The
dynamically propagating gravity fields straightforwardly determine the
``electric'' or ``tidal'' parts of the Riemann tensor.Comment: 24 pages, latex, no figure
Einstein and Yang-Mills theories in hyperbolic form without gauge-fixing
The evolution of physical and gauge degrees of freedom in the Einstein and
Yang-Mills theories are separated in a gauge-invariant manner. We show that the
equations of motion of these theories can always be written in
flux-conservative first-order symmetric hyperbolic form. This dynamical form is
ideal for global analysis, analytic approximation methods such as
gauge-invariant perturbation theory, and numerical solution.Comment: 12 pages, revtex3.0, no figure
Geometrically motivated hyperbolic coordinate conditions for numerical relativity: Analysis, issues and implementations
We study the implications of adopting hyperbolic driver coordinate conditions
motivated by geometrical considerations. In particular, conditions that
minimize the rate of change of the metric variables. We analyze the properties
of the resulting system of equations and their effect when implementing
excision techniques. We find that commonly used coordinate conditions lead to a
characteristic structure at the excision surface where some modes are not of
outflow-type with respect to any excision boundary chosen inside the horizon.
Thus, boundary conditions are required for these modes. Unfortunately, the
specification of these conditions is a delicate issue as the outflow modes
involve both gauge and main variables. As an alternative to these driver
equations, we examine conditions derived from extremizing a scalar constructed
from Killing's equation and present specific numerical examples.Comment: 9 figure
Cosmological spacetimes not covered by a constant mean curvature slicing
We show that there exist maximal globally hyperbolic solutions of the
Einstein-dust equations which admit a constant mean curvature Cauchy surface,
but are not covered by a constant mean curvature foliation.Comment: 11 page
A Gluing Construction Regarding Point Particles in General Relativity
We develop a gluing construction which adds scaled and truncated
asymptotically Euclidean solutions of the Einstein constraint equations to
compact solutions with potentially non-trivial cosmological constants. The
result is a one-parameter family of initial data which has ordinary and scaled
"point-particle" limits analogous to those of Gralla and Wald ("A rigorous
derivation of gravitational self-force," Class. Quantum Grav. 2008). In
particular, we produce examples of initial data which generalize Schwarzschild
- de Sitter initial data and gluing theorems of IMP-type
On completeness of orbits of Killing vector fields
A Theorem is proved which reduces the problem of completeness of orbits of
Killing vector fields in maximal globally hyperbolic, say vacuum, space--times
to some properties of the orbits near the Cauchy surface. In particular it is
shown that all Killing orbits are complete in maximal developements of
asymptotically flat Cauchy data, or of Cauchy data prescribed on a compact
manifold. This result gives a significant strengthening of the uniqueness
theorems for black holes.Comment: 16 pages, Latex, preprint NSF-ITP-93-4
Asymptotic gluing of asymptotically hyperbolic solutions to the Einstein constraint equations
We show that asymptotically hyperbolic solutions of the Einstein constraint
equations with constant mean curvature can be glued in such a way that their
asymptotic regions are connected.Comment: 37 pages; 2 figure
Constant mean curvature solutions of the Einstein-scalar field constraint equations on asymptotically hyperbolic manifolds
We follow the approach employed by Y. Choquet-Bruhat, J. Isenberg and D.
Pollack in the case of closed manifolds and establish existence and
non-existence results for the Einstein-scalar field constraint equations on
asymptotically hyperbolic manifolds.Comment: 15 page
- …
