1,066 research outputs found

    SAS-2 observations of the galactic gamma radiation from the Vela region

    Get PDF
    Data from a scan of the galactic plane by the SAS-2 high energy gamma ray experiment in the region 250 deg l2 290 deg show a statistically-significant excess over the general radiation from the galactic plane for gamma radiation of energy 100 MeV in the region 260 deg l2 270 deg and -7.5 deg b2 0 deg. If the enhanced gamma radiation results from interactions of cosmic rays with galactic matter, as the energy spectrum suggests, it seems reasonable to associate the enhancement with large scale galactic features, such as spiral arm segments in that direction, or with the region surrounding the Vela supernova remnant, with which PSR 0833-45 is associated. If the excess is attributed to cosmic rays released from this supernova interacting with the interstellar matter in that region, then on the order of 3.10 to the 50th power ergs would be released by that supernova in the form of cosmic rays

    SAS-2 observations of the high energy gamma radiation from the Vela region

    Get PDF
    Data from a scan of the galactic plane by the SAS-B high energy gamma ray experiment in the region 250 deg smaller than 12 smaller than 290 deg show a statistically significant excess over the general radiation from the galactic plane for gamma radiation of energy larger than 100 MeV. If the enhanced gamma radiation results from interactions of cosmic rays with galactic matter, as the energy spectrum suggests, it seems reasonable to associate the enhancement with large scale galactic features, such as spiral arm segments in that direction, or with the region surrounding the Vela supernova remnant with which PSR 0833-45 is associated. If the excess is attributed to cosmic rays released from the supernova interacting with the interstellar matter in that region, than on the order of 3 x 10 to the 50th power ergs would have been released by that supernova in the form of cosmic rays

    High energy galactic gamma radiation from cosmic rays concentrated in spiral arms

    Get PDF
    A model for the emission of high energy ( 100 MeV) gamma rays from the galactic disk was developed and compared to recent SAS-2 observations. In the calculation, it is assumed that (1) the high energy galactic gamma rays result primarily from the interaction of cosmic rays with galactic matter; (2) on the basis of theoretical and experimental arguments the cosmic ray density is proportional to the matter density on the scale of galactic arms; and (3) the matter in the galaxy, atomic and molecular, is distributed in a spiral pattern consistent with density wave theory and the experimental data on the matter distribution

    Gamma radiation from the Crab nebula above 35 MeV

    Get PDF
    Electromagnetic radiation from the Crab nebula were observed, showing that the Crab is unique among strong X-ray sources in that major component in the low energy range (1 to 10 KeV) shows little or no temporal variation. Observations of the Crab above 35 MeV were made with the high energy gamma ray telescope flown on SAS-2. The detector and technique are described in detail

    Simultaneous X-ray and Radio Monitoring of the Unusual Binary LSI+61 303: Measurements of the Lightcurve and High-Energy Spectrum

    Get PDF
    The binary system, LSI+61 303, is unusual both because of the dramatic, periodic, radio outbursts, and because of its possible association with the 100 MeV gamma-ray source, 2CG135+01. We have performed simultaneous radio and Rossi X-ray Timing Explorer X-ray observations at eleven intervals over the 26.5 day orbit, and in addition searched for variability on timescales ranging from milliseconds to hours. We confirm the modulation of the X-ray emission on orbital timescales originally reported by Taylor et al. (1996), and in addition we find a significant offset between the peak of the X-ray and radio flux. We argue that based on these results, the most likely X-ray emission mechanism is inverse Compton scattering of stellar photons off of electrons accelerated at the shock boundary between the relativistic wind of a young pulsar and the Be star wind. In these observations we also detected 2 -- 150 keV flux from the nearby low-redshift quasar QSO~0241+622. Comparing these measurements to previous hard X-ray and gamma-ray observations of the region containing both LSI+61 303 and QSO~0241+622, it is clear that emission from the QSO dominates.Comment: 23 pages, 6 figures, Accepted for publication in the Astrophysical Journa

    High energy gamma ray results from the second small astronomy satellite

    Get PDF
    A high energy (35 MeV) gamma ray telescope employing a thirty-two level magnetic core spark chamber system was flown on SAS 2. The high energy galactic gamma radiation is observed to dominate over the general diffuse radiation along the entire galactic plane, and when examined in detail, the longitudinal and latitudinal distribution seem generally correlated with galactic structural features, particularly with arm segments. The general high energy gamma radiation from the galactic plane, explained on the basis of its angular distribution and magnitude, probably results primarily from cosmic ray interactions with interstellar matter

    Implications of the Optical Observations of Neutron Stars

    Full text link
    We show that observations of pulsars with pulsed optical emission indicate that the peak flux scales according to the magnetic field strength at the light cylinder. The derived relationships indicate that the emission mechanism is common across all of the observed pulsars with periods ranging from 33ms to 385 ms and ages of 1000-300,000 years. It is noted that similar trends exist for γ\gamma ray pulsars. Furthermore the model proposed by Pacini (1971) and developed by Pacini and Salvati (1983,1987) still has validity and gives an adequate explanation of the optical phenomena.Comment: 23 pages, 6 figures, accepted for publication in the Astrophysical Journa

    Discovery of a Hard X-Ray Source, SAX J0635+0533, in the Error Box of the Gamma-Ray Source 2EG 0635+0521

    Get PDF
    We have discovered an x-ray source, SAX J0635+0533, with a hard spectrum within the error box of the GeV gamma-ray source in Monoceros, 2EG J0635+0521. The unabsorbed x-ray flux is 1.2*10^-11 erg cm^-2 s^-1 in the 2-10 keV band. The x-ray spectrum is consistent with a simple powerlaw model with absorption. The photon index is 1.50 +/- 0.08 and we detect emission out to 40 keV. Optical observations identify a counterpart with a V-magnitude of 12.8. The counterpart has broad emission lines and the colors of an early B type star. If the identification of the x-ray/optical source with the gamma-ray source is correct, then the source would be a gamma-ray emitting x-ray binary.Comment: Accepted to the Astrophysical Journal, 8 page

    The distance to the Vela pulsar gauged with HST parallax oservations

    Get PDF
    The distance to the Vela pulsar (PSR B0833-45) has been traditionally assumed to be 500 pc. Although affected by a significant uncertainty, this value stuck to both the pulsar and the SNR. In an effort to obtain a model free distance measurement, we have applied high resolution astrometry to the pulsar V~23.6 optical counterpart. Using a set of five HST/WFPC2 observations, we have obtained the first optical measurement of the annual parallax of the Vela pulsar. The parallax turns out to be 3.4 +/- 0.7 mas, implying a distance of 294(-50;+76) pc, i.e. a value significantly lower than previously believed. This affects the estimate of the pulsar absolute luminosity and of its emission efficiency at various wavelengths and confirms the exceptionally high value of the N_e towards the Vela pulsar. Finally, the complete parallax data base allows for a better measurement of the Vela pulsar proper motion (mu_alpha(cos(delta))=-37.2 +/- 1.2 mas/yr; mu_delta=28.2 +/- 1.3 mas/yr after correcting for the peculiar motion of the Sun) which, at the parallax distance, implies a transverse velocity of ~65 km/s. Moreover, the proper motion position angle appears specially well aligned with the axis of symmetry of the X-ray nebula as seen by Chandra. Such an alignment allows to assess the space velocity of the Vela pulsar to be ~81 km/s.Comment: LaTeX, 21 pages, 5 figures. Accepted for publication in Ap
    corecore