1,094 research outputs found

    On the Power of Robust Solutions in Two-Stage Stochastic and Adaptive Optimization Problems

    Get PDF
    We consider a two-stage mixed integer stochastic optimization problem and show that a static robust solution is a good approximation to the fully adaptable two-stage solution for the stochastic problem under fairly general assumptions on the uncertainty set and the probability distribution. In particular, we show that if the right-hand side of the constraints is uncertain and belongs to a symmetric uncertainty set (such as hypercube, ellipsoid or norm ball) and the probability measure is also symmetric, then the cost of the optimal fixed solution to the corresponding robust problem is at most twice the optimal expected cost of the two-stage stochastic problem. Furthermore, we show that the bound is tight for symmetric uncertainty sets and can be arbitrarily large if the uncertainty set is not symmetric. We refer to the ratio of the optimal cost of the robust problem and the optimal cost of the two-stage stochastic problem as the stochasticity gap. We also extend the bound on the stochasticity gap for another class of uncertainty sets referred to as positive. If both the objective coefficients and right-hand side are uncertain, we show that the stochasticity gap can be arbitrarily large even if the uncertainty set and the probability measure are both symmetric. However, we prove that the adaptability gap (ratio of optimal cost of the robust problem and the optimal cost of a two-stage fully adaptable problem) is at most four even if both the objective coefficients and the right-hand side of the constraints are uncertain and belong to a symmetric uncertainty set. The bound holds for the class of positive uncertainty sets as well. Moreover, if the uncertainty set is a hypercube (special case of a symmetric set), the adaptability gap is one under an even more general model of uncertainty where the constraint coefficients are also uncertain.National Science Foundation (U.S.) (NSF Grant DMI-0556106)National Science Foundation (U.S.) (NSF Grant EFRI-0735905

    A First Derivative Potts Model for Segmentation and Denoising Using ILP

    Full text link
    Unsupervised image segmentation and denoising are two fundamental tasks in image processing. Usually, graph based models such as multicut are used for segmentation and variational models are employed for denoising. Our approach addresses both problems at the same time. We propose a novel ILP formulation of the first derivative Potts model with the 1\ell_1 data term, where binary variables are introduced to deal with the 0\ell_0 norm of the regularization term. The ILP is then solved by a standard off-the-shelf MIP solver. Numerical experiments are compared with the multicut problem.Comment: 6 pages, 2 figures. To appear at Proceedings of International Conference on Operations Research 2017, Berli

    Delay, memory, and messaging tradeoffs in distributed service systems

    Get PDF
    We consider the following distributed service model: jobs with unit mean, exponentially distributed, and independent processing times arrive as a Poisson process of rate λn\lambda n, with 0<λ<10<\lambda<1, and are immediately dispatched by a centralized dispatcher to one of nn First-In-First-Out queues associated with nn identical servers. The dispatcher is endowed with a finite memory, and with the ability to exchange messages with the servers. We propose and study a resource-constrained "pull-based" dispatching policy that involves two parameters: (i) the number of memory bits available at the dispatcher, and (ii) the average rate at which servers communicate with the dispatcher. We establish (using a fluid limit approach) that the asymptotic, as nn\to\infty, expected queueing delay is zero when either (i) the number of memory bits grows logarithmically with nn and the message rate grows superlinearly with nn, or (ii) the number of memory bits grows superlogarithmically with nn and the message rate is at least λn\lambda n. Furthermore, when the number of memory bits grows only logarithmically with nn and the message rate is proportional to nn, we obtain a closed-form expression for the (now positive) asymptotic delay. Finally, we demonstrate an interesting phase transition in the resource-constrained regime where the asymptotic delay is non-zero. In particular, we show that for any given α>0\alpha>0 (no matter how small), if our policy only uses a linear message rate αn\alpha n, the resulting asymptotic delay is upper bounded, uniformly over all λ<1\lambda<1; this is in sharp contrast to the delay obtained when no messages are used (α=0\alpha = 0), which grows as 1/(1λ)1/(1-\lambda) when λ1\lambda\uparrow 1, or when the popular power-of-dd-choices is used, in which the delay grows as log(1/(1λ))\log(1/(1-\lambda))

    Probabilistic combinatorial optimization: Moments, semidefinite programming, and asymptotic bounds

    Get PDF
    10.1137/S1052623403430610SIAM Journal on Optimization151185-20

    Single‐commodity stochastic network design under demand and topological uncertainties with insufficient data

    Full text link
    Stochastic network design is fundamental to transportation and logistic problems in practice, yet faces new modeling and computational challenges resulted from heterogeneous sources of uncertainties and their unknown distributions given limited data. In this article, we design arcs in a network to optimize the cost of single‐commodity flows under random demand and arc disruptions. We minimize the network design cost plus cost associated with network performance under uncertainty evaluated by two schemes. The first scheme restricts demand and arc capacities in budgeted uncertainty sets and minimizes the worst‐case cost of supply generation and network flows for any possible realizations. The second scheme generates a finite set of samples from statistical information (e.g., moments) of data and minimizes the expected cost of supplies and flows, for which we bound the worst‐case cost using budgeted uncertainty sets. We develop cutting‐plane algorithms for solving the mixed‐integer nonlinear programming reformulations of the problem under the two schemes. We compare the computational efficacy of different approaches and analyze the results by testing diverse instances of random and real‐world networks. © 2017 Wiley Periodicals, Inc. Naval Research Logistics 64: 154–173, 2017Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/137236/1/nav21739_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137236/2/nav21739.pd

    On the probabilistic min spanning tree Problem

    Get PDF
    We study a probabilistic optimization model for min spanning tree, where any vertex vi of the input-graph G(V,E) has some presence probability pi in the final instance G′ ⊂ G that will effectively be optimized. Suppose that when this “real” instance G′ becomes known, a spanning tree T, called anticipatory or a priori spanning tree, has already been computed in G and one can run a quick algorithm (quicker than one that recomputes from scratch), called modification strategy, that modifies the anticipatory tree T in order to fit G ′. The goal is to compute an anticipatory spanning tree of G such that, its modification for any G ′ ⊆ G is optimal for G ′. This is what we call probabilistic min spanning tree problem. In this paper we study complexity and approximation of probabilistic min spanning tree in complete graphs under two distinct modification strategies leading to different complexity results for the problem. For the first of the strategies developed, we also study two natural subproblems of probabilistic min spanning tree, namely, the probabilistic metric min spanning tree and the probabilistic min spanning tree 1,2 that deal with metric complete graphs and complete graphs with edge-weights either 1, or 2, respectively

    Hospital-Wide Inpatient Flow Optimization

    Get PDF
    An ideal that supports quality and delivery of care is to have hospital operations that are coordinated and optimized across all services in real-time. As a step toward this goal, we propose a multistage adaptive robust optimization approach combined with machine learning techniques. Informed by data and predictions, our framework unifies the bed assignment process across the entire hospital and accounts for present and future inpatient flows, discharges as well as bed requests – from the emergency department, scheduled surgeries and admissions, and outside transfers. We evaluate our approach through simulations calibrated on historical data from a large academic medical center. For the 600-bed institution, our optimization model was solved in seconds, reduced off-service placement by 24% on average, and boarding delays in the emergency department and post-anesthesia units by 35% and 18% respectively. We also illustrate the benefit from using adaptive linear decision rules instead of static assignment decisions

    Algorithm Engineering in Robust Optimization

    Full text link
    Robust optimization is a young and emerging field of research having received a considerable increase of interest over the last decade. In this paper, we argue that the the algorithm engineering methodology fits very well to the field of robust optimization and yields a rewarding new perspective on both the current state of research and open research directions. To this end we go through the algorithm engineering cycle of design and analysis of concepts, development and implementation of algorithms, and theoretical and experimental evaluation. We show that many ideas of algorithm engineering have already been applied in publications on robust optimization. Most work on robust optimization is devoted to analysis of the concepts and the development of algorithms, some papers deal with the evaluation of a particular concept in case studies, and work on comparison of concepts just starts. What is still a drawback in many papers on robustness is the missing link to include the results of the experiments again in the design
    corecore