1,680 research outputs found
Terminal velocities of luminous, early-type SMC stars
Ultraviolet spectra from the Space Telescope Imaging Spectrograph (STIS) are
used to determine terminal velocities for 11 O and B-type giants and
supergiants in the Small Magellanic Cloud (SMC) from the Si IV and C IV
resonance lines. Using archival data from observations with the Goddard
High-Resolution Spectrograph and the International Ultraviolet Explorer
telescope, terminal velocities are obtained for a further five B-type
supergiants. We discuss the metallicity dependence of stellar terminal
velocities, finding no evidence for a significant scaling between Galactic and
SMC metallicities for Teff < 30,000 K, consistent with the predictions of
radiation driven wind theory for supergiant stars. A comparison of the
ratio between the SMC and Galactic samples, while
consistent with the above statement, emphasizes that the uncertainties in the
distances to galactic O-stars are a serious obstacle to a detailed comparison
with theory. For the SMC sample there is considerable scatter in this ratio at
a given effective temperature, perhaps indicative of uncertainties in stellar
masses.Comment: 28 pages, 8 figures, accepted by ApJ; minor revisions prior to
acceptanc
Laminar flow of two miscible fluids in a simple network
When a fluid comprised of multiple phases or constituents flows through a
network, non-linear phenomena such as multiple stable equilibrium states and
spontaneous oscillations can occur. Such behavior has been observed or
predicted in a number of networks including the flow of blood through the
microcirculation, the flow of picoliter droplets through microfluidic devices,
the flow of magma through lava tubes, and two-phase flow in refrigeration
systems. While the existence of non-linear phenomena in a network with many
inter-connections containing fluids with complex rheology may seem
unsurprising, this paper demonstrates that even simple networks containing
Newtonian fluids in laminar flow can demonstrate multiple equilibria.
The paper describes a theoretical and experimental investigation of the
laminar flow of two miscible Newtonian fluids of different density and
viscosity through a simple network. The fluids stratify due to gravity and
remain as nearly distinct phases with some mixing occurring only by diffusion.
This fluid system has the advantage that it is easily controlled and modeled,
yet contains the key ingredients for network non-linearities. Experiments and
3D simulations are first used to explore how phases distribute at a single
T-junction. Once the phase separation at a single junction is known, a network
model is developed which predicts multiple equilibria in the simplest of
networks. The existence of multiple stable equilibria is confirmed
experimentally and a criteria for their existence is developed. The network
results are generic and could be applied to or found in different physical
systems
Characterisation of an analogue liquid for hydrodynamic studies of gas-ionic liquid flows
Ionic liquids are liquid salts at low temperatures (normally less than 100°C). They are powerful solvents with very low vapour pressure. They have great potentials in many applications such as gas absorption and chemical synthesis. However, they are expensive. This limits extensive studies towards establishing phenomenological models. To address this limitation, an analogue liquid, with properties similar to an ionic liquid, has been identified which on the grounds of cost and safety appears to be suitable.
In this paper, the hydrodynamic behaviour of an ionic liquid in a bubble column is compared with those of water and other liquids with similar physical properties. Average gas holdup, bubble coalescence, bubble size and specific interfacial area with different liquids are examined. Gas hold-up was determined by monitoring the change of conductivity between two flush mounted rings. The differences in bubble size and coalescence are revealed by analysing the stills taken from a high speed video camera. The dominant flow pattern in a small diameter column with ionic liquids or other fluids having similar viscosity is slug flow. The small bubbles in the liquid slugs make a smaller contribution to the specific interfacial area than Taylor bubbles. It is observed that Taylor bubbles can coalesce. The hydrodynamics of an ionic liquid in a bubble column can be estimated from that of a fluid with similar physical properties
A Search for Wolf-Rayet Stars in the Small Magellanic Cloud
We conducted an extensive search for Wolf-Rayet stars (W-Rs) in the SMC,
using the same interference filter imaging techniques that have proved
successful in finding W-Rs in more distant members of the Local Group.
Photometry of some 1.6 million stellar images resulted in some 20 good
candidates, which we then examined spectroscopically. Two of these indeed
proved to be newly found W-Rs, bringing the total known in the SMC from 9 to
11. Other finds included previously unknown Of-type stars (one as early as
O5f?p)),the recovery of the Luminous Blue Variable S18, and the discovery of a
previously unknown SMC symbiotic star. More important, however, is the fact
that there does not exist a significant number of W-Rs waiting to be discovered
in the SMC. The number of W-Rs in the SMC is a factor of 3 lower than in the
LMC (per unit luminosity), and we argue this is the result of the SMC's low
metallicity on the evolution of the most massive stars.Comment: Accepted by Astrophysical Journal. Postscript version available via
ftp.lowell.edu/pub/massey/smcwr.ps.gz Revised version contains slightly
revised spectral types for the Of stars but is otherwise unchange
Liquid film thickness behaviour within a large diameter vertical 180° return bend
Experimental results of liquid film thickness distribution of an air–water mixture flowing through a vertical 180° return bend are reported. Measurements of liquid film thickness were achieved using flush mounted pin and parallel wire probes. The bend has a diameter of 127 mm and a curvature ratio (R/D) of 3. The superficial velocities of air ranged from 3.5 to 16.1 m/s and those for water from 0.02 to 0.2 m/s. At these superficial velocity ranges, the flow pattern investigated in this work focused on churn and annular flows. It was found that at liquid and gas superficial velocities of 0.02 m/s and 6.2 m/s, respectively, the averaged liquid film thickness peak at 90°. At gas superficial velocity of 16.1 m/s, the relationship between them is linear due to the shear forces overcoming gravity. Additionally, it was found that deposition of entrained droplets keeps the liquid film on the outside of the bend. The results of polar plots of average liquid film thickness in the bend showed that the distribution of the liquid film is not symmetrical with thicker films on the inside of the bend due to the action of gravity. Experimental results on average liquid film thickness showed good agreement with the simulation data reported in the literature
Spitzer SAGE-SMC Infrared Photometry of Massive Stars in the Small Magellanic Cloud
We present a catalog of 5324 massive stars in the Small Magellanic Cloud
(SMC), with accurate spectral types compiled from the literature, and a
photometric catalog for a subset of 3654 of these stars, with the goal of
exploring their infrared properties. The photometric catalog consists of stars
with infrared counterparts in the Spitzer, SAGE-SMC survey database, for which
we present uniform photometry from 0.3-24 um in the UBVIJHKs+IRAC+MIPS24 bands.
We compare the color magnitude diagrams and color-color diagrams to those of
the Large Magellanic Cloud (LMC), finding that the brightest infrared sources
in the SMC are also the red supergiants, supergiant B[e] (sgB[e]) stars,
luminous blue variables, and Wolf-Rayet stars, with the latter exhibiting less
infrared excess, the red supergiants being less dusty and the sgB[e] stars
being on average less luminous. Among the objects detected at 24 um are a few
very luminous hypergiants, 4 B-type stars with peculiar, flat spectral energy
distributions, and all 3 known luminous blue variables. We detect a distinct Be
star sequence, displaced to the red, and suggest a novel method of confirming
Be star candidates photometrically. We find a higher fraction of Oe and Be
stars among O and early-B stars in the SMC, respectively, when compared to the
LMC, and that the SMC Be stars occur at higher luminosities. We estimate
mass-loss rates for the red supergiants, confirming the correlation with
luminosity even at the metallicity of the SMC. Finally, we confirm the new
class of stars displaying composite A & F type spectra, the sgB[e] nature of
2dFS1804 and find the F0 supergiant 2dFS3528 to be a candidate luminous blue
variable with cold dust.Comment: 23 pages, 17 figures, 5 tables, accepted for publication in the
Astronomical Journa
Moderate hypothermia within 6 h of birth plus inhaled xenon versus moderate hypothermia alone after birth asphyxia (TOBY-Xe): a proof-of-concept, open-label, randomised controlled trial
Background Moderate cooling after birth asphyxia is associated with substantial reductions in death and disability, but additional therapies might provide further benefit. We assessed whether the addition of xenon gas, a promising novel therapy, after the initiation of hypothermia for birth asphyxia would result in further improvement. Methods Total Body hypothermia plus Xenon (TOBY-Xe) was a proof-of-concept, randomised, open-label, parallel-group trial done at four intensive-care neonatal units in the UK. Eligible infants were 36–43 weeks of gestational age, had signs of moderate to severe encephalopathy and moderately or severely abnormal background activity for at least 30 min or seizures as shown by amplitude-integrated EEG (aEEG), and had one of the following: Apgar score of 5 or less 10 min after birth, continued need for resuscitation 10 min after birth, or acidosis within 1 h of birth. Participants were allocated in a 1:1 ratio by use of a secure web-based computer-generated randomisation sequence within 12 h of birth to cooling to a rectal temperature of 33·5°C for 72 h (standard treatment) or to cooling in combination with 30% inhaled xenon for 24 h started immediately after randomisation. The primary outcomes were reduction in lactate to N-acetyl aspartate ratio in the thalamus and in preserved fractional anisotropy in the posterior limb of the internal capsule, measured with magnetic resonance spectroscopy and MRI, respectively, within 15 days of birth. The investigator assessing these outcomes was masked to allocation. Analysis was by intention to treat. This trial is registered with ClinicalTrials.gov, number NCT00934700, and with ISRCTN, as ISRCTN08886155. Findings The study was done from Jan 31, 2012, to Sept 30, 2014. We enrolled 92 infants, 46 of whom were randomly assigned to cooling only and 46 to xenon plus cooling. 37 infants in the cooling only group and 41 in the cooling plus xenon group underwent magnetic resonance assessments and were included in the analysis of the primary outcomes. We noted no significant differences in lactate to N-acetyl aspartate ratio in the thalamus (geometric mean ratio 1·09, 95% CI 0·90 to 1·32) or fractional anisotropy (mean difference −0·01, 95% CI −0·03 to 0·02) in the posterior limb of the internal capsule between the two groups. Nine infants died in the cooling group and 11 in the xenon group. Two adverse events were reported in the xenon group: subcutaneous fat necrosis and transient desaturation during the MRI. No serious adverse events were recorded. Interpretation Administration of xenon within the delayed timeframe used in this trial is feasible and apparently safe, but is unlikely to enhance the neuroprotective effect of cooling after birth asphyxia
Reddening law and interstellar dust properties along Magellanic sight-lines
This study establishes that SMC, LMC and Milky Way extinction curves obey the
same extinction law which depends on the 2200A bump size and one parameter, and
generalizes the Cardelli, Clayton and Mathis (1989) relationship. This suggests
that extinction in all three galaxies is of the same nature. The role of linear
reddening laws over all the visible/UV wavelength range, particularly important
in the SMC but also present in the LMC and in the Milky Way, is also
highlighted and discussed.Comment: accepted for publication in Astrophysics and Space Science. 16 pages,
12 figures. Some figures are colour plot
HST observations of the Local Group dwarf galaxy Leo I
We present deep HST F555W (V) and F814W (I) observations of a central field
in the Local Group dwarf spheroidal (dSph) galaxy Leo I. The resulting
color-magnitude diagram (CMD) reaches I \simeq 26 and reveals the oldest ~10-15
Gyr old turnoffs. Nevertheless, a horizontal branch is not obvious in the CMD.
Given the low metallicity of the galaxy, this likely indicates that the first
substantial star formation in the galaxy may have been somehow delayed in Leo I
in comparison with the other dSph satellites of the Milky Way. The subgiant
region is well and uniformly populated from the oldest turnoffs up to the 1 Gyr
old turnoff, indicating that star formation has proceeded in a continuous way,
with possible variations in intensity but no big gaps between successive
bursts, over the galaxy's lifetime. The structure of the red-clump of core
He-burning stars is consistent with the large amount of intermediate-age
population inferred from the main sequence and the subgiant region. In spite of
the lack of gas in Leo I, the CMD clearly shows star formation continuing until
1 Gyr ago and possibly until a few hundred Myrs ago in the central part of the
galaxy.Comment: 26 pages with 8 figures (fig 2 not available electronically). To be
published in ApJ, April 1 1999 (vol.514, #2
- …
