5,629 research outputs found

    From Anti-equilibrium to The Socialist System and Beyond

    Get PDF
    This essay attempts to understand János Kornai’s works from a political economy perspective. It argues that Kornai has significantly contributed to the formation of a new paradigm of political economy. The main endeavor of Kornai has been the combination of analytical concepts of economics with the empirical description of real economies. After a certain period of theoretical experimentation János Kornai formulated his research program that can be called the shortage economy explanation of the socialist system. The Economics of Shortage and The Socialist System have created a new theoretical paradigm in a framework in which it has become possible to establish a connection between the analytical and empirical, universal and historical aspects of the theory studying the socialist system as a real economic entity. János Kornai has built his analysis of the socialist system on the primary role of politics in the creation of economic institutions. In his present work on capitalism he has extended this thesis to the capitalist system. This seems to be an important contribution of his to a new political economy paradigm that is just in the process of formation

    Systemic risk and macroeconomic fat tails

    Get PDF
    We propose a mechanism for shock amplification that potentially can account for fat tails in the distribution of the growth rate of national output. We argue that extreme macroeconomic events, such as the Great Depression and the Great Recession, were preceded by significant turmoil in the banking system. We have developed a model of bank network formation and presented numerical simulations that show that, for the benchmark case, aggregate credit follows a random walk. When we introduce fire sales the model does not only produce larger variations in the growth of aggregate credit but also shows that there is an asymmetry between booms and busts that is also consistent with empirical evidence

    Institutions, Human Capital, and Development

    Get PDF
    In this article, we revisit the relationship among institutions, human capital, and development. We argue that empirical models that treat institutions and human capital as exogenous are misspecified, both because of the usual omitted variable bias problems and because of differential measurement error in these variables, and that this misspecification is at the root of the very large returns of human capital, about four to five times greater than that implied by micro (Mincerian) estimates, found in the previous literature. Using cross-country and cross-regional regressions, we show that when we focus on historically determined differences in human capital and control for the effect of institutions, the impact of institutions on long-run development is robust, whereas the estimates of the effect of human capital are much diminished and become consistent with micro estimates. Using historical and cross-country regression evidence, we also show that there is no support for the view that differences in the human capital endowments of early European colonists have been a major factor in the subsequent institutional development of former colonies.Comisión Nacional de Investigación Ciencia y Tecnología (Chile) (CONICYT/Programa de Investigación Asociativa (project SOC1102))United States. Army Research Office (ARO MURI W911NF-12-1-0509

    Warfare, Fiscal Capacity, and Performance

    Get PDF
    We exploit differences in casualties sustained in pre-modern wars to estimate the impact of fiscal capacity on economic performance. In the past, states fought different amounts of external conflicts, of various lengths and magnitudes. To raise the revenues to wage wars, states made fiscal innovations, which persisted and helped to shape current fiscal institutions. Economic historians claim that greater fiscal capacity was the key long-run institutional change brought about by historical conflicts. Using casualties sustained in pre-modern wars to instrument for current fiscal institutions, we estimate substantial impacts of fiscal capacity on GDP per worker. The results are robust to a broad range of specifications, controls, and sub-samples

    Vertical integration and technology: theory and evidence

    Get PDF
    This paper investigates the determinants of vertical integration. We first derive a number of predictions regarding the relationship between technology intensity and vertical integration from a simple incomplete contracts model. Then, we investigate these predictions using plant-level data for the UK manufacturing sector. Most importantly, and consistent with theory, we find that the technology intensities of downstream (producer) and upstream (supplier) industries have opposite effects on the likelihood of vertical integration. Also consistent with theory, both these effects are stronger when the supplying industry accounts for a large fraction of the producer's costs. These results are generally robust and hold with alternative measures of technology intensity, with alternative estimation strategies, and with or without controlling for a number of firm and industry-level characteristics

    A Dynamic Theory of Resource Wars

    Get PDF
    We develop a dynamic theory of resource wars and study the conditions under which such wars can be prevented. Our focus is on the interaction between the scarcity of resources and the incentives for war in the presence of limited commitment. We show that a key parameter determining the incentives for war is the elasticity of demand. Our first result identifies a novel externality that can precipitate war: price-taking firms fail to internalize the impact of their extraction on military action. In the case of inelastic resource demand, war incentives increase over time and war may become inevitable. Our second result shows that in some situations, regulation of prices and quantities by the resource-rich country can prevent war, and when this is the case, there will also be slower resource extraction than the Hotelling benchmark (with inelastic demand). Our third result is that because of limited commitment and its implications for armament incentives, regulation of prices and quantities might actually precipitate war even in some circumstances where wars would not have arisen under competitive markets

    Clearing algorithms and network centrality

    Full text link
    I show that the solution of a standard clearing model commonly used in contagion analyses for financial systems can be expressed as a specific form of a generalized Katz centrality measure under conditions that correspond to a system-wide shock. This result provides a formal explanation for earlier empirical results which showed that Katz-type centrality measures are closely related to contagiousness. It also allows assessing the assumptions that one is making when using such centrality measures as systemic risk indicators. I conclude that these assumptions should be considered too strong and that, from a theoretical perspective, clearing models should be given preference over centrality measures in systemic risk analyses

    Robust Distributed Routing in Dynamical Networks - Part I: Locally Responsive Policies and Weak Resilience

    Get PDF
    Original manuscript March 25, 2011Robustness of distributed routing policies is studied for dynamical networks, with respect to adversarial disturbances that reduce the link flow capacities. A dynamical network is modeled as a system of ordinary differential equations derived from mass conservation laws on a directed acyclic graph with a single origin-destination pair and a constant total outflow at the origin. Routing policies regulate the way the total outflow at each nondestination node gets split among its outgoing links as a function of the current particle density, while the outflow of a link is modeled to depend on the current particle density on that link through a flow function. The dynamical network is called partially transferring if the total inflow at the destination node is asymptotically bounded away from zero, and its weak resilience is measured as the minimum sum of the link-wise magnitude of disturbances that make it not partially transferring. The weak resilience of a dynamical network with arbitrary routing policy is shown to be upper bounded by the network's min-cut capacity and, hence, is independent of the initial flow conditions. Moreover, a class of distributed routing policies that rely exclusively on local information on the particle densities, and are locally responsive to that, is shown to yield such maximal weak resilience. These results imply that locality constraints on the information available to the routing policies do not cause loss of weak resilience. Fundamental properties of dynamical networks driven by locally responsive distributed routing policies are analyzed in detail, including global convergence to a unique limit flow. The derivation of these properties exploits the cooperative nature of these dynamical systems, together with an additional stability property implied by the assumption of monotonicity of the flow as a function of the density on each link.National Science Foundation (U.S.). Office of Emerging Frontiers in Research and Innovation (ARES Grant 0735956)United States. Air Force Office of Scientific Research (Grant FA9950-09-1-0538

    Robust distributed routing in dynamical networks with cascading failures

    Get PDF
    We consider a dynamical formulation of network flows, whereby the network is modeled as a switched system of ordinary differential equations derived from mass conservation laws on directed graphs with a single origin-destination pair and a constant inflow at the origin. The rate of change of the density on each link of the network equals the difference between the inflow and the outflow on that link. The inflow to a link is determined by the total flow arriving to the tail node of that link and the routing policy at that tail node. The outflow from a link is modeled to depend on the current density on that link through a flow function. Every link is assumed to have finite capacity for density and the flow function is modeled to be strictly increasing up to the maximum density. A link becomes inactive when the density on it reaches the capacity. A node fails if all its outgoing links become inactive, and such node failures can propagate through the network due to rerouting of flow. We prove some properties of these dynamical networks and study the resilience of such networks under distributed routing policies with respect to perturbations that reduce link-wise flow functions. In particular, we propose an algorithm to compute upper bounds on the maximum resilience over all distributed routing policies, and discuss examples that highlight the role of cascading failures on the resilience of the network.National Science Foundation (U.S.). Office of Emerging Frontiers in Research and Innovation (ARES Grant 0735956)United States. Air Force Office of Scientific Research (Grant FA9550-09-1-0538
    corecore