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Robust Distributed Routing in Dynamical Networks with Cading Failures

Giacomo Como Ketan Savla Daron Acemoglu Munther A. Dahleh iligrRrazzoli

Abstract— We consider a dynamical formulation of network  hand, the way the total outflow at a non-destination node
flows, whereby the network is modeled as a switched system of gets split among its outgoing links depends on thating
ordinary differential equations derived from mass consenation policy at that node. We focus odistributed routing policy.

laws on directed graphs with a single origin-destination pa and . ?
aconstantinflowgat tphe origin. Thgrate gf change of thgdensj characterized by the property that the proportion of total

on each link of the network equals the difference between the Outflow routed to the outgoing links of a node is allowed to
inflow and the outflow on that link. The inflow to a link is  depend only orlocal information consisting of the current

determined by the total flow arriving to the tail node of that  densities on the outgoing links of the same node.
link and the routing policy at that tail node. The outflow from The novel modeling element in the present contribution is

a link is modeled to depend on the current density on that link that link i dtoh finit itv for d it
through a flow function. Every link is assumed to have finite &l EVery link IS assumed 10 have finité capacily for density

capacity for density and the flow function is modeled to be The flow function is modeled to be strictly increasing as
strictly increasing up to the maximum density. A link becomes  density increases from zero up to the maximum density. A
inactive when the density on it reaches the capacity. A nodafls  |ink becomes inactive when the density on it reaches the
if all its OUIQC;'“%h"“kS t?etﬁome t'\'xlaclt("’g' ar;d such ?ode ffaHres capacity. This, in particular, is a discontinuous versidn o
can propagate rou e networ ue 1o rerouting Ot TIOW. . . X . .
We FF))rO\F/)e gsome progerties of these dynamical net%vorks and the fundamental traf'flt_: diagram from traffic engineering [4]
study the resilience of such networks under distributed roting ~ Where the flow functions are modeled to be continuously
policies with respect to perturbations that reduce link-wise flow increasing up to a critical density and then continuously
functions. In particular, we propose an algorithm to compute  decreasing to zero up to the maximum density. Such a feature
upper bounds on the maximum resilience over all distributed  510ws for the possibility of spill-backs and cascaded.fiak
routing policies, and discuss examples that highlight theale of in our model. which was absent from the model considered
cascading failures on the resilience of the network. in 2], [3] ’
|. INTRODUCTION Our main objective is studying the resilience of such

dynamical networks with respect to perturbations that cedu
the flow capacity of their links. We measure the magni-
' - -~ tude of a perturbation as the sum of the link-wise flow
road traffic, data, and production networks. They entail gapacity reductions and define the margin of resilience as
fluid-like description of the macroscopic motion of pari] e minimum magnitude of a perturbation which makes a
which are routed from their origins to their destinationa vi dynamical network previously in equilibrium converge to a
intermediate nodes: we refer to standard textbooks, such gSie in which no flow reaches the destination node. In fact
[1], for a thorough treatme_nt. ) once the density reaches its maximum capacity on a link,

In this paper, we consider a dynamical framework fOfhe corresponding outflow is zero, and the link becomes
studying network flows, as proposed in our earlier work [2lireversibly inactive. If all the outgoing links of a node
[3]. In particular, we studylynamical networksmodeled as pecome inactive, the node fails irreversibly, and in turn al
systems of ordinary differential equations derived fromsma j;5 incoming links become inactive. As a consequence some

conservation laws on directed graphs with a single originsiher jinks may experience an overload, possibly reaching
destination pair and a constant total inflow at the origine Thipqir density capacity, thus becoming inactive ever since.

rate of change of the density on each link of the networkhgh this mechanism, link and node failures propagate
equals the difference between timélow and theoutflow of through the network.

that I_ink. The Iat_ter is modeled to depend on the current Models for cascades in general complex networks are
density on that link through #ow function On the other given in [5], [6], [7], while domain-specific models are pro-

o . . vided in [8] (power networks), [9] (financial networks),and
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some properties of such dynamical networks, including a Example 1 (Flow function)For fI"® oM « > 0, let

dichotomy stating that either the asymptotic outflow equals max max  if

the inflow, or it is null; we provide an upper bound on the . (p.) = { 0 (pe/PE™) !f =0

margin of resilience for a tree-like dynamical network in T pe=re

terms of an easily computable static function of the link Let R := x.cg[0, pT®] and F := x.cg[0, f) the sets

flow capacities and the initial equilibrium flow; we discuss a of admissible density vectors, and flow vectors, respegtive

insightful example showing how the spill back effect can b&vrite f := {f.: e€ £} € F, andp:= {p. : e € £} € R,

useful in improving the resilience of the dynamical networkfor the vectors of flows and of densities, respectively, on
Before proceeding, let us gather here some preliminatjie different links. We shall compactly denote Jy= 1(p)

notation to be used throughout the paper. Rebe the set the functional relationship between density and flow vestor

of real numbersR; := {z € R: = > 0} be the set of interpretingy as a (surjective) map frori® to F. For an

nonnegative reals. Whed and 5 are finite sets)A| will  inflow Ay > 0, we shall consider the set of equilibrium flows

denote the cardinality afl, R* (respectivelyR+') will stay

for the space of real-valued (nonnegative-real-valuedjors  7*(),) := {f* cF: Z LR =0,

whose components are indexed by elementd cdndRA*5 ec€o

for the space of matrices whose real entries are indexed by Z fr = Z 5 Yo<ov< n} )

pairs of elements i x 5. 1 will stand for the all-one vector, €& ¢ ce€y "¢

whose size will be clear from the context. Lé{X’) be the An origin-destination cut is sorié¢ C V such thab € ¢/ and

closure of a se’ C R4, Forz € R, let[z]" := max{0,2}. n¢U.Ford CV,let&} :={eec&: ale) eU,7(e) ¢ U}

A directed multigraph is the paitV, £) of a finite sety of be the set of links with tail node i and head node in

nodes, and of a multisétof links consisting of ordered pairs v \ ¢, and put

of nodes (i.e., we allow for parallel links). #= (v,w) € £

m ax)

pe € [0, pg

is a link, we shall writeo(e) = v and 7(e) = w for its CN.U) = Zeee+ e
tail and head node, respectively. The sets of outgoing and ] ) “ .
incoming links of a nodes € V will be denoted bys+ ;=  Themin-cut capacityof the flow network V' is
{e € € ole) =v}and&; = {e € £€: 7(e) = v}, CN) = min C(N, ) ,
respectively. u

where the minimization runs over all the origin-destinatio
cuts. The min-cut max-flow theorem implies that (\g) #
We briefly summarize the dynamical flow frameworkg if and only if C'(\) > Ao, a condition that we shall assume
introduced in [2], [3], highlighting the key differences. to hold throughout the paper, in order to avoid trivialities
For every non-destination node< v < n, the simplex of

A. Dynamical networks with cascading failures probability vectors ove€:+ will be denoted byS, = {p €

Definition 1 (Flow network):A flow networkN = (7, p) &r - . o m
is the pair of atopology described by a finite directed Ry Dleeet Pe = 1}, While Ry = X g [0, pc™] and

) ' - . Fo = % g+ 10, fM®] will stand for the sets of all admissible
muIUgrap_hT — (_]/75), w_hereV =1{0,1, -,n} is the n_ode local density vectors, and flow vectors, respectiv@ly, :=
set andf is the link multiset, and a family dow functions R\ {p3}, wherep? = {pmax : ¢ € £+}, will denote the
o= {pe : [0, 00 — Ry }.ce describing the functional _ Puts AT oy

dependencd, — 1i.(p.) of the flow on the density on every set of all but the fully congested local density vectors. The
link e € £. The quantitypl'® is referred to as thelensity

notation fV := {f. : e € &F} € F,, andp’ := {p. : e €
JF H .y
capacityof a link e € £, while its flow capacityis defined &} € R, will stand for the vectors of flows and densities,
as [ := sup{pe(pe) : pe € [0, p7™}.

respectively, on the outgoing links of a node
We now introduce the notion of distributed routing policy.
Throughout, we shall assume that the topol@ggontains Definition 2 (Distributed routing policy)A  distributed
a unique origin (i.e., a node € V such thatg; is empty), routing policy for a network A/ is a family of functions
and a unique destination (i.e., a nodec V such thate} G := {G" : R} — S,}o<v<n describing the ratio in which
is empty). In addition, we shall assume that there existsthe outflow from each non-destination nodegets split
path in 7 to the destination node from every other nodemong its outgoing link sef,", as a function of the observed
in V. With no loss of generality, we shall assume thecurrent density® on the outgoing links themselves. For all
origin and the destination nodes to be labeledobyndn, 0 < v < n, the functionG" is assumed to be continuously
respectively. Note that, unlike the model in [2], [3], we dodifferentiable and such that
not impose acyclicity assumption at this stage. However, we (i) if for somee € Er, pe = pT thenGY(p¥) = 0;
shall formulate more stringent assumptions on the network 9
topology in Section Ill. Moreover, we shall focus on flow (i) a—G}’(pv) >0forall p? e R, e#£je&f.
functions satisfying the following: Pe ) o )
Assumption 1 (Flow function)Eor every linke € &, the The.two sallen'g feat_ures of Def|n|t|0n_2 are .thma:al in-
density capacity™ is finite. Moreover, the flow function formation constraintvhich allows the routing policy=" (p")
e : [0,p™ = R, is continuously differentiable and 0 depend only on thg dgnsW on the se;F of outgoing
increasing or0, p™), and such that, (0) = .(p™®) = 0. Imk_s of the non-destination node, and the constraint (i),
which models the fact that no flow can be routed to a

Il. PROBLEM STATEMENT



fully congested link. Observe that evepy € R; has at irreversibly inactive. On the other hand, (3) implies that a
least one non-zero component, so that the aforementionedde becomes inactive, or fails, when all the outgoing links
constraint does not prevent one from meeting the constraidd so, and thus it remains inactive ever since. In turn, this
> . GY¢(p") = 1. The additional condition (ii) is a rather drops the outflow of all its incoming links to zero so that they
natural in that it states that the fraction of flow routed toga are bound to become inactive. As a consequence some other
any link does not decrease when the density in some othlétks may experience an overload, possibly reaching their
link is increased. It is reminiscent of the notion of coopieea  density capacity, thus becoming inactive ever since. Tginou
dynamical system [13], and in fact implies certain usefuthis mechanism, link and node failures can propagate throug
monotonicity properties of the solution of the dynamicathe network.
network. In fact, routing policies with this property were The monotonicity property of the status indicators are
proven to be optimal in terms of robustness in the our earlitated in the following Proposition together with another
work [2], [3] on dynamical networks with infinite density fundamental property of the dynamical network.
capacity on the links. Proposition 1: Let N' be a flow network satisfying As-
We are now ready to introduce the dynamical networksumption 1,G be a distributed routing policy as per Def-
Let A/ be a flow network satisfying Assumption G, a inition 2, and Ay > 0 a constant inflow at the origin
distributed routing policy as per Definition 2, and > 0 a node. Consider the dynamical network (1)-(4) associated to
constant inflow at the origin. Consider the dynamical systerf\V', G, \o). Then, for any initial density vectop(0) € R,
whose state is the density vectat) € R evolving in time the activation status indicatoig.(e) and x,(t), of every

according to link e € £ and every nodey € V are non-increasing in
d © © t. Moreover, either of the alternatives
—Pe(t) = Xo(e) D) Aae) ()GT ( p74 (1) ) =xr(e) (£) fe ()
11760 = Yol (Do (0GZ (5791 o0, i Alt) = o. ©
for all e € £, where f(t) = u(p(t)) and thm An(t) = 0 6)
Ao if v=0 o
Ay(t) = _ (2) holds.
Zeesg fe(t) it v>0, Proof The first part of the claim was already proven. In
is the incoming flow at node € V, while order to prove the second part, fix some- 0, and define
wl = { 1T e 1260 0 <n gy =IOl 50 = > elth) = L))
v if v=n, ecEr
Ee(t) = Lio, pmay (pe(t)) 5 (4) Lett* > 0 be the time of the last link failure. Arguing in

are the activation status indicators of a nede V, and of a the a way analogous to [2, Lemmas 1 and 2] one finds that

link e € £. We shell refer to the dynamics (1)-(4) as to the . ¢ .
dynamical network associated to the trigh’, G, \o). () =¢(t) + /t Bls)ds,  vt=t",

Equation (1) states that the rate of change of the density o
on a link e outgoing from some non-destination nodgs SO that/j(t) is integrable. Then a standard argument (ex-
given by the difference betweeh, (t)G2(p"(t)), i.e., the ploiting the boundedness of its time-derivative, see agan
portion of the total outflow at node which is routed to link pr_oof of [3, Lemma 2] shows that the vectdy.() : e €
e, and f.(t), i.e., the flow on linke. These equations model €n } is converging. Henceg fortiori, An () = 3_.cer fe(t)
conservation of mass both at every non-destination node alsd convergent. Finally, it is not hard to check that, if
on the links of the flow network. In particular, whan () =  Xo(t) = 1 forall ¢ >0, thenlim;_ /:n(t) = Ao, while
0, no flow can be absorbed by any of the outgoing links ofM—oco An(t) = 0 if xo(t) = 0 for ¢ > ¢. u
nodev, and (1) implies that no flow comes out of any of the The second part of Proposition 1 states a fundamental
incoming links of node. Observe that the distributed routingdichotomy in the behavior of the dynamical network we
policy G“(p”) induces a local feedback which couples theyre considering: either all the asymptotic outflow equas th
dynamics of the flow on the different links. In fact, theconstant inflow, or it is zero. Such dichotomy is a direct
dynamical network (1)-(3) should be interpreted as|@R  consequence of the boundedness of the density capacities
dimensional switched system. Existence and uniqueness 04@ad can in fact be contrasted with the behavior of dynamical
solution for every initial density(0) € R then follow from  npetworks with infinite density capacity studied in [2], [3],
the differentiability assumptions on the flow functipnand  \yere the notion of: transferring network is meaningful for
the routing policyg by standard arguments. all o € (0, 1]. This motivates the following:

The most novel feature of the dynamics (1)-(4) resides in pefinition 3: Let A/ be a flow network satisfying Assump-
the role of the link and node active_ltion status indicatofs),  tion 1, G be a distributed routing policy as per Definition
and x,(t). Indeed, observe that, §(¢*) = 0 for somet*, 2 and), > 0 a constant inflow at the origin node. The
thené&.(¢t) = 0 for all ¢ > t*. This is a direct consequence gynamical network (1)-(3) associated o/, G, \o) is said

of the fact that\, () (1)G¢ (p") — pe(pe) = 0 Whenevem. = o petransferringwith respect to some initial density vector
pe ™. Once the density reaches its maximum capacity on &0) ¢ R if (5) holds.

link, the corresponding outflow is zero, and the link becomes



B. Perturbations and resilience corresponding flowf°® = u(p°). We shall also assume that

We shall consider persistent perturbations of the dynamici'€ topology7 is tree-like, i.e., the only node reachable from
transport network (1) that reduce the flow functions on thE'€ origin by two distinct paths is the destination one. This

links, as per the following: in particular implies that the nodese V = {0,...,n} have
Definition 4 (Admissible perturbation)An  admissible P€en labeled in such a way thae) < 7(e) for everye € £.
perturbation of a network N' = (T,p), satisfying Before proceeding we introduce some preliminary nota-
Assumption 1, is a networkN = (7—’7 fi), with the tion. For a flow network satisfying Assumption 1, and an
same topology 7, and a family of perturbed flow €auilibrium flow f° e 7*(Xo), let
1 o= 7 . ma: N
functions & = {fi. : [0, 0™ R, }ece, such that, Ry(N, ) == Z fmax_ o

for everye € &, 1. satisfies Assumption 1, as well as
fe(pe) < pe(pe), for all p. € [0, pT'®]. We accordingly let
fmax . — sup{fic(pe) : pe € [0, p™®]}. The magnitudeof an  be the residual capacity of a non-destination nodev < n,
admissible perturbation is defined as and let

||§||1:Z§€7 RN, f°) :==min{R,(N, f°) : 0 <v <n}
N be the minimal node residual capacity of the network.
where For every non-destination node< v < n, and A > 0,
SERE, o= sw {uelpe) —filp)}, ecE. 4
pe€l0,01%] @ W)= {x € X0, 1™ Y (- ) < )\} . (8)

Remark 1:Note that under the above definition of anwhere the product/sum indexis intended to run ovef .
admissible perturbation, we 1¢f"® of the perturbed flow Further, letd, = +oc. Forv =n —1,...,1,0, iteratively
function to be the same as that of the original flow functiondefine

ecEF

(o)

Given a dynamical transport network associated to a flowl, := min {c,(z) : x € X,(\})} , Ay = Z e e
N, a distributed routing policg, a constant inflow,, and oty 9)
an admissible perturbatiokl, we shall refer to the dynamical where
network associated to the tripl/, G, o) as theperturbed () i = Z . min{ze, dr (o)} (10)
dynamical network ety
We can now define the notion ofiargin of resilience The intuition behind this definition is the following, (z) is
Definition 5: (Margin of resiliencgé Let AV be a flow the cost that an hypothetical malicious adversary has ® fac
network satisfying Assumption I; be a distributed routing in order to reduce the sum of the maximal flow capacities
policy as per Definition 2, andy > 0 a constant inflow of the outgoing links of a node below the inflow\;, thus
at the origin node. Consider the dynamical network (1)-(43ausing the eventual link’s failure. In order to computehsuc
associated tqN, G, \g). For anyp® € R, the margin of cost, for every outgoing link, the minimum between the
resiliencey (N, p°) is defined as the infimum magnitude offlow capacity reduction. and the previously computed cost
all the admissible perturbations” for which the perturbed to induce a failure of the head nodge) is considered.
dynamical network(\, G, A¢) is not transferring with re-  Observe thatt,, = X, (A\J) is a non-empty convex poly-
spect to the initial density vectgi(0) = p°. tope, and the cost functianis concave ove#’,. Hence, the
minimization (9) can be restricted to the finite set of extaém
oints of X, i.e., points which cannot be written as the
convex combination of other points ii,. Let X7 be the set
Bf those extremal pointg* of X, in which¢,(x) achieves its

In the rest of this paper we shall focus on estimating th
margin of resilience of dynamical networks. A first suc
estimate is provided in terms of the min-cut capacity of th
network. In fact, it is not hard to show th&at(N') — Ao IS iimum. For allz* € X*, defineA, (z*) C RE as follows,
an upper bound on the margin of resilience of the dynamicﬁlet Ti={ce&t: I*v<’ PNY ;nd de_finé%* © RE by

network associated tQ\V, G, \o). Observe that in [2] the (. 7 . . .
network capacity,C(N), was found to be the maximal 0] =jforall j € J, andd; =0 for anye € £1, J. Then,

margin of weak resilience of a dynamical network withou%et K:={r(e): e€ £7\ J}, and define
either finite density capacity, or local information coastts

on the routing policy. In the following section, we shall ~ Au(z") 1—{
derive a tighter bound on the margin of resilience in the

presence of finite density capacity and local informatiofrinally, put

constraints. A= ) Au).
I1l. UPPER BOUND ON THE RESILIENCE TTEXS
In this section, we present the main result providing aH order to get some intuition on the above definition, it is
upper bound on the margin of resilience of a dynamical negonvenient to think ofA, as the set of extremal minimum

work. Throughout, we shall assume thétis an equilibrium cost perturbation magnitudes that cause the eventuatdailu
for the unperturbed dynamical flow netwoik, G, \o), with ~ of nodew. This motivates the following

5*+Z5T(k):5keAk,VkeK}.
ke



Definition 6: Let A be an tree-like flow network satis- perturbation, until the first node failure. This implies tha
fying Assumption 1,)¢ > 0 a constant inflow, ang® € the perturbed dynamic netwofk* G, \o), one has

F*(Ao) an equilibrium flow. Let _
( 0) q Av(t) :AZ > Z fgnax_i,z _ Z fénax’

F(Na fo) = d07 A(Nvfo) = AOa ecEt ecES
whered, andA, are the outcomes of the foregoing iterativeuntil the first node failure, which in turn implies that in fiei
definition. time p.(t) converges tg]'®, and hencé.(t) = 0, for all

) e € &, so that node necessarily fails in finite time.
Observe that the computation D{\V, f°) := do can be  Now, one can proceed by considering a perturbatién’
considered computationally feasible as it involves iieedy  \which analogously reduces the flow capacity on bégh,
solving n minimizations of concave functions (in fact, it is gnd &} .. By exploiting property (ii) on Definition 2 it is
possible to cast it as a linear program) on polytope&in possible to prove that the dynamical network is monotone
defined by|£f | + 1 inequalities. in the sense of [13], i.e., preserving the natural partideor
Two simple properties of the above definition are gatheregk R (» > o' if p. > p., for all ¢), both with respect to
in the following proposition, whose proof is omitted becaus the initial condition, and the flow functiop. This implies
of space limitations. that, with the same initial conditiop(0), the solution of the
Proposition 2: Let A/ be a flow network satisfying As- perturbed dynamical networ(k\N/l—l,gJ\O) is dominated by
sumption 1,)o > 0 a constant inflow, ang® € 7*(Xo) an  the one of(N, G, \). Hence, since node; fails in finite
equilibrium flow. Then, time in (N, G, \o), it does so also ifN' "1, G, \o), and
o o arguing in a similar way as before, one is able to show that
RN, f?) ST, f7) < CIN) = Ao also nodeu;_; fails in finite time in (N'~1,G, \o). Then,
The main result of this section is stated below. the argument can be iterated until proving that nage= 0
Theorem 1 (Upper bound on the margin of resilience): fails in finite time in (M, G, A), which implies the claim.
Let N be a tree-like flow network satisfying Assumption u
1, Ao > 0 a constant inflow, and; a distributed routing Let us conclude this section with the following remark.
policy. Assume that the dynamical network associated thheorem 1 states thalf(f°,\') is an upper bound on
(V. G, \o) admits an equilibrium density vecter € R. the margin of resilience/(p°, ) of a tree-like dynamical

Then, the margin of the resilience is upper bounded as: network with respect to some initial equ“ibrium. The remso
why this upper bound may fail to be tight can be intuitively

Y(p°,N) <T(f°,N), (11) grasped by observing thaf(f°, V) takes into account
. . just backward propagations of node failures. However, it
where f© := u(p°). could occur that, e.g., in a tree-like network, perturbagio

Proof ~We provide a brief sketch of the proof, in ordersypported far from the root node cause the eventual failure
to convey the main ideas, and refer the reader to a fortis; of one of the branches stemming from the root node.
coming longer version of the manuscript for the details. Faowever, because of the lack of information about the non-
simplicity, we shall assume thaf > 0 forall 0 <wv <n.  gisruptive but still potentially resilience-reducing et of

Let us start by choosing a perturbation magnitude vect@he perturbation on the surviving branches, the inflow at
§ € AN, f°). To each such vector, one can associate @e root node gets split among the surviving branches in a
subset of nodes/ C V which includes0, as well as all potentially suboptimal way, leading to the eventual failof
those nodes such thats. > 0 for somee € £;. For the gych pranches as well, and therefore making the dynamical
ease of the rest of the proof it is convenient to explicit th@etwork non transferring. Such kind of patterns are notrtake

natural ordering of{, by writing 2/ = {ux : 0 <k <1}, into account by the analysis presented in this section.
where0 = ug < v; < ... < v;. The proof proceeds by

defining an admissible perturbatioXif = (7', /1) such that IV. EXAMPLES

||(pe) — fie(pe)lloo is arbitrarily close tod. on every link  |n this section, we present an example to illustrate the
e € &, and the perturbed dynamical network associated fgfect of cascades on the margin of resilience, and compare i
(N, G, A\o) is not transferring. This is performed inductivelywith corresponding results from our prior work [2], [3] wieer

onk = I,...,1,0. First, let us consider node = w;, we computed margins of resilience for dynamical networks
and observe that, because of the wayas been defined, with no cascading failures.
necessarilyd. = z; for all e € &F, wherez* € A7 is In [2], we computed margin ofveak resilience of a

an extremal minimizer o, over X,(A7). SinceAj > 0,  dynamical network when there is no bound on the maximum
we can approximate:* arbitrarily well by somei* €  density on the links, and the flow functions are monotonjcall
Xoeer (0, /&™) such thaty® .o+ f&'™* — &7 < AJ. Then, increasing. The margin of weak resilience is defined to
we can define an admissible perturbatigh= (7, i) such be the infimum magnitude of all admissible perturbations
that il = (1 — 2 /M)y, for all e € £}, andjil = u. for  for which the outflow from the destination node of the
everye € £\ EF. The first key property of this perturbation perturbed dynamical network is not asymptotically positiv

is that, since none of the links¢ £ is perturbed, the tree- In particular, we showed that the margin of weak resilience
likeness of the network topology implies that the dynamici that setting is equal to the maximum flow capacity of the
of the edgesx € £ with o(e) < v are unaffected by the network. It is easy to construct examples to demonstrate tha



V. CONCLUSION

In this paper, we studied dynamical network modeled as
switched systems of ordinary differential equations dativ
from mass conservation laws on directed graphs with single
origin-destination pair and constant inflow at the origiheT
main features of this framework are finiteness of the maxi-
mum density capacity on the links, and the local information
constraint on the routing policies which govern the way
the outflow of a node gets split among its outgoing links
as a function of the current density on those links only.
Because of the finiteness assumption on the link density
. . capacities, the model allows for cascaded link and node
the margin of (V\_/eak) resilience can decrease due to Présenifiures. our analysis has focused on resilience propgertie
of cascading failures. . » of such networks against persistent perturbations thatcesd

In [3], we computed margin obtrong resilience of a e flow capacities of their links. Beyond the introduction
dynamical network when there is no bound on the maximumg the model and the derivation of some of its fundamental
density on the links, and the flow functions are monotorycallyrgperties, our main contribution is an upper bound on the
increasing. The margin of strong resilience is defined 4 5qgin of resilience, defined as the minimum magnitude of a
be the infimum magnitude of all admissible perturbationgertyrbation causing the eventual failure of the origin @od
for vyh|c.h (analogous to definition 5) the .outflow from_ theius preventing any flow to reach destination. Such upper
destination node of the perturbed dynamical network is N¢fond may fail to be tight because it only takes into account
asymptotically equal to\o. In particular, we showed that ngirect backward propagation patterns of failures.
the margin of strong resilience in that setting is equal ® th | fytyre, we plan to complement the analysis presented

minimum node residual capacity of the network. We demorkere with lower bounds for specific routing policies and
strate that, when the links have finite capacity for dersitiegytend the analysis to networks with cycles.

as in this paper, the margin of strong resilience could be

Fig. 1. A sample network topology.
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This example shows that spill-backs act as backward

propagators of information to upstream routing policias (i

this example, routing policy at nodegets information about

links e3 and ey through spill-backs). Such additional infor-

mation about downstream links by routing policies increase

resilience.



